| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmrexrn | Structured version Visualization version GIF version | ||
| Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
| Ref | Expression |
|---|---|
| eldmrexrn | ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7018 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ dom 𝐹) → (𝐹‘𝑌) ∈ ran 𝐹) | |
| 2 | eqid 2733 | . . 3 ⊢ (𝐹‘𝑌) = (𝐹‘𝑌) | |
| 3 | eqeq1 2737 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 = (𝐹‘𝑌) ↔ (𝐹‘𝑌) = (𝐹‘𝑌))) | |
| 4 | 3 | rspcev 3573 | . . 3 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ (𝐹‘𝑌) = (𝐹‘𝑌)) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌)) |
| 5 | 1, 2, 4 | sylancl 586 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ dom 𝐹) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌)) |
| 6 | 5 | ex 412 | 1 ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 dom cdm 5621 ran crn 5622 Fun wfun 6483 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: eldmrexrnb 7034 |
| Copyright terms: Public domain | W3C validator |