MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmrexrn Structured version   Visualization version   GIF version

Theorem eldmrexrn 6856
Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
eldmrexrn (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem eldmrexrn
StepHypRef Expression
1 fvelrn 6843 . . 3 ((Fun 𝐹𝑌 ∈ dom 𝐹) → (𝐹𝑌) ∈ ran 𝐹)
2 eqid 2821 . . 3 (𝐹𝑌) = (𝐹𝑌)
3 eqeq1 2825 . . . 4 (𝑥 = (𝐹𝑌) → (𝑥 = (𝐹𝑌) ↔ (𝐹𝑌) = (𝐹𝑌)))
43rspcev 3622 . . 3 (((𝐹𝑌) ∈ ran 𝐹 ∧ (𝐹𝑌) = (𝐹𝑌)) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌))
51, 2, 4sylancl 588 . 2 ((Fun 𝐹𝑌 ∈ dom 𝐹) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌))
65ex 415 1 (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wrex 3139  dom cdm 5554  ran crn 5555  Fun wfun 6348  cfv 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-fv 6362
This theorem is referenced by:  eldmrexrnb  6857
  Copyright terms: Public domain W3C validator