| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmrexrn | Structured version Visualization version GIF version | ||
| Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
| Ref | Expression |
|---|---|
| eldmrexrn | ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7071 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ dom 𝐹) → (𝐹‘𝑌) ∈ ran 𝐹) | |
| 2 | eqid 2736 | . . 3 ⊢ (𝐹‘𝑌) = (𝐹‘𝑌) | |
| 3 | eqeq1 2740 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 = (𝐹‘𝑌) ↔ (𝐹‘𝑌) = (𝐹‘𝑌))) | |
| 4 | 3 | rspcev 3606 | . . 3 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ (𝐹‘𝑌) = (𝐹‘𝑌)) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌)) |
| 5 | 1, 2, 4 | sylancl 586 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ dom 𝐹) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌)) |
| 6 | 5 | ex 412 | 1 ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 dom cdm 5659 ran crn 5660 Fun wfun 6530 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: eldmrexrnb 7087 |
| Copyright terms: Public domain | W3C validator |