MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmrexrn Structured version   Visualization version   GIF version

Theorem eldmrexrn 7029
Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
eldmrexrn (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem eldmrexrn
StepHypRef Expression
1 fvelrn 7014 . . 3 ((Fun 𝐹𝑌 ∈ dom 𝐹) → (𝐹𝑌) ∈ ran 𝐹)
2 eqid 2729 . . 3 (𝐹𝑌) = (𝐹𝑌)
3 eqeq1 2733 . . . 4 (𝑥 = (𝐹𝑌) → (𝑥 = (𝐹𝑌) ↔ (𝐹𝑌) = (𝐹𝑌)))
43rspcev 3579 . . 3 (((𝐹𝑌) ∈ ran 𝐹 ∧ (𝐹𝑌) = (𝐹𝑌)) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌))
51, 2, 4sylancl 586 . 2 ((Fun 𝐹𝑌 ∈ dom 𝐹) → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌))
65ex 412 1 (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  dom cdm 5623  ran crn 5624  Fun wfun 6480  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  eldmrexrnb  7030
  Copyright terms: Public domain W3C validator