![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnrexdmb | Structured version Visualization version GIF version |
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
Ref | Expression |
---|---|
elrnrexdmb | ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6572 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | fvelrnb 6946 | . . 3 ⊢ (𝐹 Fn dom 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹‘𝑥) = 𝑌)) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹‘𝑥) = 𝑌)) |
4 | eqcom 2733 | . . 3 ⊢ (𝑌 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑌) | |
5 | 4 | rexbii 3088 | . 2 ⊢ (∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ dom 𝐹(𝐹‘𝑥) = 𝑌) |
6 | 3, 5 | bitr4di 289 | 1 ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 dom cdm 5669 ran crn 5670 Fun wfun 6531 Fn wfn 6532 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fn 6540 df-fv 6545 |
This theorem is referenced by: edgiedgb 28822 uhgrspansubgrlem 29055 cycpmrn 32808 |
Copyright terms: Public domain | W3C validator |