| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnrexdmb | Structured version Visualization version GIF version | ||
| Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
| Ref | Expression |
|---|---|
| elrnrexdmb | ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6511 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | fvelrnb 6882 | . . 3 ⊢ (𝐹 Fn dom 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹‘𝑥) = 𝑌)) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹‘𝑥) = 𝑌)) |
| 4 | eqcom 2738 | . . 3 ⊢ (𝑌 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑌) | |
| 5 | 4 | rexbii 3079 | . 2 ⊢ (∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ dom 𝐹(𝐹‘𝑥) = 𝑌) |
| 6 | 3, 5 | bitr4di 289 | 1 ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 dom cdm 5614 ran crn 5615 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: edgiedgb 29032 uhgrspansubgrlem 29268 cycpmrn 33112 |
| Copyright terms: Public domain | W3C validator |