MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnrexdmb Structured version   Visualization version   GIF version

Theorem elrnrexdmb 6853
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
Assertion
Ref Expression
elrnrexdmb (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem elrnrexdmb
StepHypRef Expression
1 funfn 6370 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fvelrnb 6719 . . 3 (𝐹 Fn dom 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑌))
31, 2sylbi 220 . 2 (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑌))
4 eqcom 2765 . . 3 (𝑌 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑌)
54rexbii 3175 . 2 (∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥) ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑌)
63, 5bitr4di 292 1 (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wrex 3071  dom cdm 5528  ran crn 5529  Fun wfun 6334   Fn wfn 6335  cfv 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-iota 6299  df-fun 6342  df-fn 6343  df-fv 6348
This theorem is referenced by:  edgiedgb  26959  uhgrspansubgrlem  27192  cycpmrn  30948
  Copyright terms: Public domain W3C validator