MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnrexdmb Structured version   Visualization version   GIF version

Theorem elrnrexdmb 6948
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
Assertion
Ref Expression
elrnrexdmb (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem elrnrexdmb
StepHypRef Expression
1 funfn 6448 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fvelrnb 6812 . . 3 (𝐹 Fn dom 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑌))
31, 2sylbi 216 . 2 (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑌))
4 eqcom 2745 . . 3 (𝑌 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑌)
54rexbii 3177 . 2 (∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥) ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑌)
63, 5bitr4di 288 1 (Fun 𝐹 → (𝑌 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wrex 3064  dom cdm 5580  ran crn 5581  Fun wfun 6412   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  edgiedgb  27327  uhgrspansubgrlem  27560  cycpmrn  31312
  Copyright terms: Public domain W3C validator