MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimampt Structured version   Visualization version   GIF version

Theorem elimampt 5991
Description: Membership in the image of a mapping. (Contributed by Thierry Arnoux, 3-Jan-2022.)
Hypotheses
Ref Expression
elimampt.f 𝐹 = (𝑥𝐴𝐵)
elimampt.c (𝜑𝐶𝑊)
elimampt.d (𝜑𝐷𝐴)
Assertion
Ref Expression
elimampt (𝜑 → (𝐶 ∈ (𝐹𝐷) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem elimampt
StepHypRef Expression
1 df-ima 5627 . . 3 (𝐹𝐷) = ran (𝐹𝐷)
21eleq2i 2823 . 2 (𝐶 ∈ (𝐹𝐷) ↔ 𝐶 ∈ ran (𝐹𝐷))
3 elimampt.d . . . 4 (𝜑𝐷𝐴)
4 elimampt.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
54reseq1i 5923 . . . . . . 7 (𝐹𝐷) = ((𝑥𝐴𝐵) ↾ 𝐷)
6 resmpt 5985 . . . . . . 7 (𝐷𝐴 → ((𝑥𝐴𝐵) ↾ 𝐷) = (𝑥𝐷𝐵))
75, 6eqtrid 2778 . . . . . 6 (𝐷𝐴 → (𝐹𝐷) = (𝑥𝐷𝐵))
87rneqd 5877 . . . . 5 (𝐷𝐴 → ran (𝐹𝐷) = ran (𝑥𝐷𝐵))
98eleq2d 2817 . . . 4 (𝐷𝐴 → (𝐶 ∈ ran (𝐹𝐷) ↔ 𝐶 ∈ ran (𝑥𝐷𝐵)))
103, 9syl 17 . . 3 (𝜑 → (𝐶 ∈ ran (𝐹𝐷) ↔ 𝐶 ∈ ran (𝑥𝐷𝐵)))
11 elimampt.c . . . 4 (𝜑𝐶𝑊)
12 eqid 2731 . . . . 5 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1312elrnmpt 5897 . . . 4 (𝐶𝑊 → (𝐶 ∈ ran (𝑥𝐷𝐵) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
1411, 13syl 17 . . 3 (𝜑 → (𝐶 ∈ ran (𝑥𝐷𝐵) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
1510, 14bitrd 279 . 2 (𝜑 → (𝐶 ∈ ran (𝐹𝐷) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
162, 15bitrid 283 1 (𝜑 → (𝐶 ∈ (𝐹𝐷) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wrex 3056  wss 3897  cmpt 5170  ran crn 5615  cres 5616  cima 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  reprpmtf1o  34639  ellcsrspsn  35685
  Copyright terms: Public domain W3C validator