Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elimampt | Structured version Visualization version GIF version |
Description: Membership in the image of a mapping. (Contributed by Thierry Arnoux, 3-Jan-2022.) |
Ref | Expression |
---|---|
elimampt.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elimampt.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
elimampt.d | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Ref | Expression |
---|---|
elimampt | ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐷) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5593 | . . 3 ⊢ (𝐹 “ 𝐷) = ran (𝐹 ↾ 𝐷) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐶 ∈ (𝐹 “ 𝐷) ↔ 𝐶 ∈ ran (𝐹 ↾ 𝐷)) |
3 | elimampt.d | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
4 | elimampt.f | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | reseq1i 5876 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐷) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐷) |
6 | resmpt 5934 | . . . . . . 7 ⊢ (𝐷 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
7 | 5, 6 | syl5eq 2791 | . . . . . 6 ⊢ (𝐷 ⊆ 𝐴 → (𝐹 ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
8 | 7 | rneqd 5836 | . . . . 5 ⊢ (𝐷 ⊆ 𝐴 → ran (𝐹 ↾ 𝐷) = ran (𝑥 ∈ 𝐷 ↦ 𝐵)) |
9 | 8 | eleq2d 2824 | . . . 4 ⊢ (𝐷 ⊆ 𝐴 → (𝐶 ∈ ran (𝐹 ↾ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ 𝐷 ↦ 𝐵))) |
10 | 3, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ran (𝐹 ↾ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ 𝐷 ↦ 𝐵))) |
11 | elimampt.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
12 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
13 | 12 | elrnmpt 5854 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (𝐶 ∈ ran (𝑥 ∈ 𝐷 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ran (𝑥 ∈ 𝐷 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
15 | 10, 14 | bitrd 278 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran (𝐹 ↾ 𝐷) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
16 | 2, 15 | syl5bb 282 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐷) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: reprpmtf1o 32506 |
Copyright terms: Public domain | W3C validator |