![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimampt | Structured version Visualization version GIF version |
Description: Membership in the image of a mapping. (Contributed by Thierry Arnoux, 3-Jan-2022.) |
Ref | Expression |
---|---|
elimampt.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elimampt.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
elimampt.d | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Ref | Expression |
---|---|
elimampt | ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐷) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5687 | . . 3 ⊢ (𝐹 “ 𝐷) = ran (𝐹 ↾ 𝐷) | |
2 | 1 | eleq2i 2818 | . 2 ⊢ (𝐶 ∈ (𝐹 “ 𝐷) ↔ 𝐶 ∈ ran (𝐹 ↾ 𝐷)) |
3 | elimampt.d | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
4 | elimampt.f | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | reseq1i 5977 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐷) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐷) |
6 | resmpt 6038 | . . . . . . 7 ⊢ (𝐷 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
7 | 5, 6 | eqtrid 2778 | . . . . . 6 ⊢ (𝐷 ⊆ 𝐴 → (𝐹 ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
8 | 7 | rneqd 5936 | . . . . 5 ⊢ (𝐷 ⊆ 𝐴 → ran (𝐹 ↾ 𝐷) = ran (𝑥 ∈ 𝐷 ↦ 𝐵)) |
9 | 8 | eleq2d 2812 | . . . 4 ⊢ (𝐷 ⊆ 𝐴 → (𝐶 ∈ ran (𝐹 ↾ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ 𝐷 ↦ 𝐵))) |
10 | 3, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ran (𝐹 ↾ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ 𝐷 ↦ 𝐵))) |
11 | elimampt.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
12 | eqid 2726 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
13 | 12 | elrnmpt 5954 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (𝐶 ∈ ran (𝑥 ∈ 𝐷 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ran (𝑥 ∈ 𝐷 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
15 | 10, 14 | bitrd 278 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran (𝐹 ↾ 𝐷) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
16 | 2, 15 | bitrid 282 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐷) ↔ ∃𝑥 ∈ 𝐷 𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 ⊆ wss 3948 ↦ cmpt 5228 ran crn 5675 ↾ cres 5676 “ cima 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-rex 3061 df-rab 3421 df-v 3466 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5146 df-opab 5208 df-mpt 5229 df-xp 5680 df-rel 5681 df-cnv 5682 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 |
This theorem is referenced by: reprpmtf1o 34484 ellcsrspsn 35481 |
Copyright terms: Public domain | W3C validator |