MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimampt Structured version   Visualization version   GIF version

Theorem elimampt 6072
Description: Membership in the image of a mapping. (Contributed by Thierry Arnoux, 3-Jan-2022.)
Hypotheses
Ref Expression
elimampt.f 𝐹 = (𝑥𝐴𝐵)
elimampt.c (𝜑𝐶𝑊)
elimampt.d (𝜑𝐷𝐴)
Assertion
Ref Expression
elimampt (𝜑 → (𝐶 ∈ (𝐹𝐷) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem elimampt
StepHypRef Expression
1 df-ima 5713 . . 3 (𝐹𝐷) = ran (𝐹𝐷)
21eleq2i 2836 . 2 (𝐶 ∈ (𝐹𝐷) ↔ 𝐶 ∈ ran (𝐹𝐷))
3 elimampt.d . . . 4 (𝜑𝐷𝐴)
4 elimampt.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
54reseq1i 6005 . . . . . . 7 (𝐹𝐷) = ((𝑥𝐴𝐵) ↾ 𝐷)
6 resmpt 6066 . . . . . . 7 (𝐷𝐴 → ((𝑥𝐴𝐵) ↾ 𝐷) = (𝑥𝐷𝐵))
75, 6eqtrid 2792 . . . . . 6 (𝐷𝐴 → (𝐹𝐷) = (𝑥𝐷𝐵))
87rneqd 5963 . . . . 5 (𝐷𝐴 → ran (𝐹𝐷) = ran (𝑥𝐷𝐵))
98eleq2d 2830 . . . 4 (𝐷𝐴 → (𝐶 ∈ ran (𝐹𝐷) ↔ 𝐶 ∈ ran (𝑥𝐷𝐵)))
103, 9syl 17 . . 3 (𝜑 → (𝐶 ∈ ran (𝐹𝐷) ↔ 𝐶 ∈ ran (𝑥𝐷𝐵)))
11 elimampt.c . . . 4 (𝜑𝐶𝑊)
12 eqid 2740 . . . . 5 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1312elrnmpt 5981 . . . 4 (𝐶𝑊 → (𝐶 ∈ ran (𝑥𝐷𝐵) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
1411, 13syl 17 . . 3 (𝜑 → (𝐶 ∈ ran (𝑥𝐷𝐵) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
1510, 14bitrd 279 . 2 (𝜑 → (𝐶 ∈ ran (𝐹𝐷) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
162, 15bitrid 283 1 (𝜑 → (𝐶 ∈ (𝐹𝐷) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  wss 3976  cmpt 5249  ran crn 5701  cres 5702  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  reprpmtf1o  34603  ellcsrspsn  35609
  Copyright terms: Public domain W3C validator