MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimampt Structured version   Visualization version   GIF version

Theorem elimampt 6044
Description: Membership in the image of a mapping. (Contributed by Thierry Arnoux, 3-Jan-2022.)
Hypotheses
Ref Expression
elimampt.f 𝐹 = (𝑥𝐴𝐵)
elimampt.c (𝜑𝐶𝑊)
elimampt.d (𝜑𝐷𝐴)
Assertion
Ref Expression
elimampt (𝜑 → (𝐶 ∈ (𝐹𝐷) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem elimampt
StepHypRef Expression
1 df-ima 5687 . . 3 (𝐹𝐷) = ran (𝐹𝐷)
21eleq2i 2818 . 2 (𝐶 ∈ (𝐹𝐷) ↔ 𝐶 ∈ ran (𝐹𝐷))
3 elimampt.d . . . 4 (𝜑𝐷𝐴)
4 elimampt.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
54reseq1i 5977 . . . . . . 7 (𝐹𝐷) = ((𝑥𝐴𝐵) ↾ 𝐷)
6 resmpt 6038 . . . . . . 7 (𝐷𝐴 → ((𝑥𝐴𝐵) ↾ 𝐷) = (𝑥𝐷𝐵))
75, 6eqtrid 2778 . . . . . 6 (𝐷𝐴 → (𝐹𝐷) = (𝑥𝐷𝐵))
87rneqd 5936 . . . . 5 (𝐷𝐴 → ran (𝐹𝐷) = ran (𝑥𝐷𝐵))
98eleq2d 2812 . . . 4 (𝐷𝐴 → (𝐶 ∈ ran (𝐹𝐷) ↔ 𝐶 ∈ ran (𝑥𝐷𝐵)))
103, 9syl 17 . . 3 (𝜑 → (𝐶 ∈ ran (𝐹𝐷) ↔ 𝐶 ∈ ran (𝑥𝐷𝐵)))
11 elimampt.c . . . 4 (𝜑𝐶𝑊)
12 eqid 2726 . . . . 5 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1312elrnmpt 5954 . . . 4 (𝐶𝑊 → (𝐶 ∈ ran (𝑥𝐷𝐵) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
1411, 13syl 17 . . 3 (𝜑 → (𝐶 ∈ ran (𝑥𝐷𝐵) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
1510, 14bitrd 278 . 2 (𝜑 → (𝐶 ∈ ran (𝐹𝐷) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
162, 15bitrid 282 1 (𝜑 → (𝐶 ∈ (𝐹𝐷) ↔ ∃𝑥𝐷 𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  wrex 3060  wss 3948  cmpt 5228  ran crn 5675  cres 5676  cima 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-rex 3061  df-rab 3421  df-v 3466  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4325  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5146  df-opab 5208  df-mpt 5229  df-xp 5680  df-rel 5681  df-cnv 5682  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687
This theorem is referenced by:  reprpmtf1o  34484  ellcsrspsn  35481
  Copyright terms: Public domain W3C validator