Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . . . 5
⊢ (𝐴 ↑m (0..^𝑆)) = (𝐴 ↑m (0..^𝑆)) |
2 | | eqid 2737 |
. . . . 5
⊢ (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) = (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) |
3 | | ovexd 7248 |
. . . . 5
⊢ (𝜑 → (0..^𝑆) ∈ V) |
4 | | nnex 11836 |
. . . . . . 7
⊢ ℕ
∈ V |
5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℕ ∈
V) |
6 | | reprpmtf1o.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
7 | 5, 6 | ssexd 5217 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
8 | | reprpmtf1o.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) |
9 | | reprpmtf1o.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ℕ) |
10 | | lbfzo0 13282 |
. . . . . . 7
⊢ (0 ∈
(0..^𝑆) ↔ 𝑆 ∈
ℕ) |
11 | 9, 10 | sylibr 237 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (0..^𝑆)) |
12 | | reprpmtf1o.t |
. . . . . 6
⊢ 𝑇 = if(𝑋 = 0, ( I ↾ (0..^𝑆)), ((pmTrsp‘(0..^𝑆))‘{𝑋, 0})) |
13 | 3, 8, 11, 12 | pmtridf1o 31080 |
. . . . 5
⊢ (𝜑 → 𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆)) |
14 | 1, 1, 2, 3, 3, 7, 13 | fmptco1f1o 30687 |
. . . 4
⊢ (𝜑 → (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))–1-1-onto→(𝐴 ↑m (0..^𝑆))) |
15 | | f1of1 6660 |
. . . 4
⊢ ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))–1-1-onto→(𝐴 ↑m (0..^𝑆)) → (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))–1-1→(𝐴 ↑m (0..^𝑆))) |
16 | 14, 15 | syl 17 |
. . 3
⊢ (𝜑 → (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))–1-1→(𝐴 ↑m (0..^𝑆))) |
17 | | ssrab2 3993 |
. . . . . 6
⊢ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ⊆ (𝐴 ↑m (0..^𝑆)) |
18 | | reprpmtf1o.p |
. . . . . . . . . 10
⊢ 𝑃 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑋) ∈ 𝐵} |
19 | 18 | ssrab3 3995 |
. . . . . . . . 9
⊢ 𝑃 ⊆ (𝐴(repr‘𝑆)𝑀) |
20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ⊆ (𝐴(repr‘𝑆)𝑀)) |
21 | | reprpmtf1o.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
22 | 9 | nnnn0d 12150 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
23 | 6, 21, 22 | reprval 32302 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
24 | 20, 23 | sseqtrd 3941 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ⊆ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
25 | 24 | sselda 3901 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝑐 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
26 | 17, 25 | sseldi 3899 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
27 | 26 | ex 416 |
. . . 4
⊢ (𝜑 → (𝑐 ∈ 𝑃 → 𝑐 ∈ (𝐴 ↑m (0..^𝑆)))) |
28 | 27 | ssrdv 3907 |
. . 3
⊢ (𝜑 → 𝑃 ⊆ (𝐴 ↑m (0..^𝑆))) |
29 | | f1ores 6675 |
. . 3
⊢ (((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))–1-1→(𝐴 ↑m (0..^𝑆)) ∧ 𝑃 ⊆ (𝐴 ↑m (0..^𝑆))) → ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) ↾ 𝑃):𝑃–1-1-onto→((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) “ 𝑃)) |
30 | 16, 28, 29 | syl2anc 587 |
. 2
⊢ (𝜑 → ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) ↾ 𝑃):𝑃–1-1-onto→((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) “ 𝑃)) |
31 | | resmpt 5905 |
. . . . 5
⊢ (𝑃 ⊆ (𝐴 ↑m (0..^𝑆)) → ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) ↾ 𝑃) = (𝑐 ∈ 𝑃 ↦ (𝑐 ∘ 𝑇))) |
32 | 28, 31 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) ↾ 𝑃) = (𝑐 ∈ 𝑃 ↦ (𝑐 ∘ 𝑇))) |
33 | | reprpmtf1o.f |
. . . 4
⊢ 𝐹 = (𝑐 ∈ 𝑃 ↦ (𝑐 ∘ 𝑇)) |
34 | 32, 33 | eqtr4di 2796 |
. . 3
⊢ (𝜑 → ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) ↾ 𝑃) = 𝐹) |
35 | | eqidd 2738 |
. . 3
⊢ (𝜑 → 𝑃 = 𝑃) |
36 | | vex 3412 |
. . . . . . . . 9
⊢ 𝑑 ∈ V |
37 | 36 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑑 ∈ V) |
38 | 2, 37, 28 | elimampt 30692 |
. . . . . . 7
⊢ (𝜑 → (𝑑 ∈ ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) “ 𝑃) ↔ ∃𝑐 ∈ 𝑃 𝑑 = (𝑐 ∘ 𝑇))) |
39 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → 𝑑 = (𝑐 ∘ 𝑇)) |
40 | | f1of 6661 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))–1-1-onto→(𝐴 ↑m (0..^𝑆)) → (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))⟶(𝐴 ↑m (0..^𝑆))) |
41 | 14, 40 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))⟶(𝐴 ↑m (0..^𝑆))) |
42 | 41 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))⟶(𝐴 ↑m (0..^𝑆))) |
43 | 2 | fmpt 6927 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑐 ∈
(𝐴 ↑m
(0..^𝑆))(𝑐 ∘ 𝑇) ∈ (𝐴 ↑m (0..^𝑆)) ↔ (𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)):(𝐴 ↑m (0..^𝑆))⟶(𝐴 ↑m (0..^𝑆))) |
44 | 42, 43 | sylibr 237 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → ∀𝑐 ∈ (𝐴 ↑m (0..^𝑆))(𝑐 ∘ 𝑇) ∈ (𝐴 ↑m (0..^𝑆))) |
45 | 26 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
46 | | rspa 3128 |
. . . . . . . . . . . . . 14
⊢
((∀𝑐 ∈
(𝐴 ↑m
(0..^𝑆))(𝑐 ∘ 𝑇) ∈ (𝐴 ↑m (0..^𝑆)) ∧ 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) → (𝑐 ∘ 𝑇) ∈ (𝐴 ↑m (0..^𝑆))) |
47 | 44, 45, 46 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → (𝑐 ∘ 𝑇) ∈ (𝐴 ↑m (0..^𝑆))) |
48 | 39, 47 | eqeltrd 2838 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → 𝑑 ∈ (𝐴 ↑m (0..^𝑆))) |
49 | 39 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑑 = (𝑐 ∘ 𝑇)) |
50 | 49 | fveq1d 6719 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑑‘𝑎) = ((𝑐 ∘ 𝑇)‘𝑎)) |
51 | | f1ofun 6663 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆) → Fun 𝑇) |
52 | 13, 51 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Fun 𝑇) |
53 | 52 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑎 ∈ (0..^𝑆)) → Fun 𝑇) |
54 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆)) |
55 | | f1odm 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆) → dom 𝑇 = (0..^𝑆)) |
56 | 13, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → dom 𝑇 = (0..^𝑆)) |
57 | 56 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑎 ∈ (0..^𝑆)) → dom 𝑇 = (0..^𝑆)) |
58 | 54, 57 | eleqtrrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ dom 𝑇) |
59 | | fvco 6809 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝑇 ∧ 𝑎 ∈ dom 𝑇) → ((𝑐 ∘ 𝑇)‘𝑎) = (𝑐‘(𝑇‘𝑎))) |
60 | 53, 58, 59 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝑐 ∘ 𝑇)‘𝑎) = (𝑐‘(𝑇‘𝑎))) |
61 | 60 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝑐 ∘ 𝑇)‘𝑎) = (𝑐‘(𝑇‘𝑎))) |
62 | 50, 61 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑑‘𝑎) = (𝑐‘(𝑇‘𝑎))) |
63 | 62 | sumeq2dv 15267 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐‘(𝑇‘𝑎))) |
64 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑇‘𝑎) → (𝑐‘𝑏) = (𝑐‘(𝑇‘𝑎))) |
65 | | fzofi 13547 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝑆) ∈
Fin |
66 | 65 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → (0..^𝑆) ∈ Fin) |
67 | 13 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆)) |
68 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑇‘𝑎) = (𝑇‘𝑎)) |
69 | 6 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑏 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ) |
70 | 6 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝐴 ⊆ ℕ) |
71 | 21 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝑀 ∈ ℤ) |
72 | 22 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝑆 ∈
ℕ0) |
73 | 20 | sselda 3901 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝑐 ∈ (𝐴(repr‘𝑆)𝑀)) |
74 | 70, 71, 72, 73 | reprf 32304 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝑐:(0..^𝑆)⟶𝐴) |
75 | 74 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑏 ∈ (0..^𝑆)) → (𝑐‘𝑏) ∈ 𝐴) |
76 | 69, 75 | sseldd 3902 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑏 ∈ (0..^𝑆)) → (𝑐‘𝑏) ∈ ℕ) |
77 | 76 | nncnd 11846 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑏 ∈ (0..^𝑆)) → (𝑐‘𝑏) ∈ ℂ) |
78 | 64, 66, 67, 68, 77 | fsumf1o 15287 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → Σ𝑏 ∈ (0..^𝑆)(𝑐‘𝑏) = Σ𝑎 ∈ (0..^𝑆)(𝑐‘(𝑇‘𝑎))) |
79 | 78 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → Σ𝑏 ∈ (0..^𝑆)(𝑐‘𝑏) = Σ𝑎 ∈ (0..^𝑆)(𝑐‘(𝑇‘𝑎))) |
80 | 70, 71, 72, 73 | reprsum 32305 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → Σ𝑏 ∈ (0..^𝑆)(𝑐‘𝑏) = 𝑀) |
81 | 80 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → Σ𝑏 ∈ (0..^𝑆)(𝑐‘𝑏) = 𝑀) |
82 | 63, 79, 81 | 3eqtr2d 2783 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) |
83 | | fveq1 6716 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑑 → (𝑐‘𝑎) = (𝑑‘𝑎)) |
84 | 83 | sumeq2sdv 15268 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑑 → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎)) |
85 | 84 | eqeq1d 2739 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑑 → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
86 | 85 | elrab 3602 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ↔ (𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
87 | 48, 82, 86 | sylanbrc 586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → 𝑑 ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
88 | 23 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
89 | 87, 88 | eleqtrrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) |
90 | 39 | fveq1d 6719 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → (𝑑‘0) = ((𝑐 ∘ 𝑇)‘0)) |
91 | 52 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → Fun 𝑇) |
92 | 11, 56 | eleqtrrd 2841 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈ dom 𝑇) |
93 | 92 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → 0 ∈ dom 𝑇) |
94 | | fvco 6809 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝑇 ∧ 0 ∈ dom 𝑇) → ((𝑐 ∘ 𝑇)‘0) = (𝑐‘(𝑇‘0))) |
95 | 91, 93, 94 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → ((𝑐 ∘ 𝑇)‘0) = (𝑐‘(𝑇‘0))) |
96 | 3, 8, 11, 12 | pmtridfv2 31082 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑇‘0) = 𝑋) |
97 | 96 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → (𝑇‘0) = 𝑋) |
98 | 97 | fveq2d 6721 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → (𝑐‘(𝑇‘0)) = (𝑐‘𝑋)) |
99 | | simpr 488 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝑐 ∈ 𝑃) |
100 | 99, 18 | eleqtrdi 2848 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → 𝑐 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑋) ∈ 𝐵}) |
101 | | rabid 3290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑋) ∈ 𝐵} ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑐‘𝑋) ∈ 𝐵)) |
102 | 100, 101 | sylib 221 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑐‘𝑋) ∈ 𝐵)) |
103 | 102 | simprd 499 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → ¬ (𝑐‘𝑋) ∈ 𝐵) |
104 | 103 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → ¬ (𝑐‘𝑋) ∈ 𝐵) |
105 | 98, 104 | eqneltrd 2857 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → ¬ (𝑐‘(𝑇‘0)) ∈ 𝐵) |
106 | 95, 105 | eqneltrd 2857 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → ¬ ((𝑐 ∘ 𝑇)‘0) ∈ 𝐵) |
107 | 90, 106 | eqneltrd 2857 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → ¬ (𝑑‘0) ∈ 𝐵) |
108 | 89, 107 | jca 515 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ 𝑑 = (𝑐 ∘ 𝑇)) → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) |
109 | 108 | r19.29an 3207 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑐 ∈ 𝑃 𝑑 = (𝑐 ∘ 𝑇)) → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) |
110 | 6 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ) |
111 | 21 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ) |
112 | 22 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑆 ∈
ℕ0) |
113 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) |
114 | 110, 111,
112, 113 | reprf 32304 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑:(0..^𝑆)⟶𝐴) |
115 | | f1ocnv 6673 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆) → ◡𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆)) |
116 | | f1of 6661 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆) → ◡𝑇:(0..^𝑆)⟶(0..^𝑆)) |
117 | 13, 115, 116 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ◡𝑇:(0..^𝑆)⟶(0..^𝑆)) |
118 | 117 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → ◡𝑇:(0..^𝑆)⟶(0..^𝑆)) |
119 | | fco 6569 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑:(0..^𝑆)⟶𝐴 ∧ ◡𝑇:(0..^𝑆)⟶(0..^𝑆)) → (𝑑 ∘ ◡𝑇):(0..^𝑆)⟶𝐴) |
120 | 114, 118,
119 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∘ ◡𝑇):(0..^𝑆)⟶𝐴) |
121 | | elmapg 8521 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → ((𝑑 ∘ ◡𝑇) ∈ (𝐴 ↑m (0..^𝑆)) ↔ (𝑑 ∘ ◡𝑇):(0..^𝑆)⟶𝐴)) |
122 | 7, 3, 121 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑑 ∘ ◡𝑇) ∈ (𝐴 ↑m (0..^𝑆)) ↔ (𝑑 ∘ ◡𝑇):(0..^𝑆)⟶𝐴)) |
123 | 122 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → ((𝑑 ∘ ◡𝑇) ∈ (𝐴 ↑m (0..^𝑆)) ↔ (𝑑 ∘ ◡𝑇):(0..^𝑆)⟶𝐴)) |
124 | 120, 123 | mpbird 260 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∘ ◡𝑇) ∈ (𝐴 ↑m (0..^𝑆))) |
125 | 124 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → (𝑑 ∘ ◡𝑇) ∈ (𝐴 ↑m (0..^𝑆))) |
126 | | f1ofun 6663 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆) → Fun ◡𝑇) |
127 | 13, 115, 126 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Fun ◡𝑇) |
128 | 127 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ 𝑎 ∈ (0..^𝑆)) → Fun ◡𝑇) |
129 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆)) |
130 | | f1odm 6665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆) → dom ◡𝑇 = (0..^𝑆)) |
131 | 13, 115, 130 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → dom ◡𝑇 = (0..^𝑆)) |
132 | 131 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^𝑆)) → dom ◡𝑇 = (0..^𝑆)) |
133 | 129, 132 | eleqtrrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ dom ◡𝑇) |
134 | 133 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ dom ◡𝑇) |
135 | | fvco 6809 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
◡𝑇 ∧ 𝑎 ∈ dom ◡𝑇) → ((𝑑 ∘ ◡𝑇)‘𝑎) = (𝑑‘(◡𝑇‘𝑎))) |
136 | 128, 134,
135 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝑑 ∘ ◡𝑇)‘𝑎) = (𝑑‘(◡𝑇‘𝑎))) |
137 | 136 | sumeq2dv 15267 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → Σ𝑎 ∈ (0..^𝑆)((𝑑 ∘ ◡𝑇)‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑑‘(◡𝑇‘𝑎))) |
138 | | fveq2 6717 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (◡𝑇‘𝑎) → (𝑑‘𝑏) = (𝑑‘(◡𝑇‘𝑎))) |
139 | 65 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (0..^𝑆) ∈ Fin) |
140 | 13, 115 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ◡𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆)) |
141 | 140 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → ◡𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆)) |
142 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ 𝑎 ∈ (0..^𝑆)) → (◡𝑇‘𝑎) = (◡𝑇‘𝑎)) |
143 | 110 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ 𝑏 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ) |
144 | 114 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ 𝑏 ∈ (0..^𝑆)) → (𝑑‘𝑏) ∈ 𝐴) |
145 | 143, 144 | sseldd 3902 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ 𝑏 ∈ (0..^𝑆)) → (𝑑‘𝑏) ∈ ℕ) |
146 | 145 | nncnd 11846 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ 𝑏 ∈ (0..^𝑆)) → (𝑑‘𝑏) ∈ ℂ) |
147 | 138, 139,
141, 142, 146 | fsumf1o 15287 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → Σ𝑏 ∈ (0..^𝑆)(𝑑‘𝑏) = Σ𝑎 ∈ (0..^𝑆)(𝑑‘(◡𝑇‘𝑎))) |
148 | 110, 111,
112, 113 | reprsum 32305 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → Σ𝑏 ∈ (0..^𝑆)(𝑑‘𝑏) = 𝑀) |
149 | 137, 147,
148 | 3eqtr2d 2783 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → Σ𝑎 ∈ (0..^𝑆)((𝑑 ∘ ◡𝑇)‘𝑎) = 𝑀) |
150 | 149 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → Σ𝑎 ∈ (0..^𝑆)((𝑑 ∘ ◡𝑇)‘𝑎) = 𝑀) |
151 | | fveq1 6716 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑑 ∘ ◡𝑇) → (𝑐‘𝑎) = ((𝑑 ∘ ◡𝑇)‘𝑎)) |
152 | 151 | sumeq2sdv 15268 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑑 ∘ ◡𝑇) → Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)((𝑑 ∘ ◡𝑇)‘𝑎)) |
153 | 152 | eqeq1d 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝑑 ∘ ◡𝑇) → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀 ↔ Σ𝑎 ∈ (0..^𝑆)((𝑑 ∘ ◡𝑇)‘𝑎) = 𝑀)) |
154 | 153 | elrab 3602 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∘ ◡𝑇) ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ↔ ((𝑑 ∘ ◡𝑇) ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)((𝑑 ∘ ◡𝑇)‘𝑎) = 𝑀)) |
155 | 125, 150,
154 | sylanbrc 586 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → (𝑑 ∘ ◡𝑇) ∈ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
156 | 23 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
157 | 155, 156 | eleqtrrd 2841 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → (𝑑 ∘ ◡𝑇) ∈ (𝐴(repr‘𝑆)𝑀)) |
158 | 127 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → Fun ◡𝑇) |
159 | 8, 131 | eleqtrrd 2841 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ dom ◡𝑇) |
160 | 159 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → 𝑋 ∈ dom ◡𝑇) |
161 | | fvco 6809 |
. . . . . . . . . . . . . 14
⊢ ((Fun
◡𝑇 ∧ 𝑋 ∈ dom ◡𝑇) → ((𝑑 ∘ ◡𝑇)‘𝑋) = (𝑑‘(◡𝑇‘𝑋))) |
162 | 158, 160,
161 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → ((𝑑 ∘ ◡𝑇)‘𝑋) = (𝑑‘(◡𝑇‘𝑋))) |
163 | | f1ocnvfv 7089 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆) ∧ 0 ∈ (0..^𝑆)) → ((𝑇‘0) = 𝑋 → (◡𝑇‘𝑋) = 0)) |
164 | 163 | imp 410 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆) ∧ 0 ∈ (0..^𝑆)) ∧ (𝑇‘0) = 𝑋) → (◡𝑇‘𝑋) = 0) |
165 | 13, 11, 96, 164 | syl21anc 838 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (◡𝑇‘𝑋) = 0) |
166 | 165 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → (◡𝑇‘𝑋) = 0) |
167 | 166 | fveq2d 6721 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → (𝑑‘(◡𝑇‘𝑋)) = (𝑑‘0)) |
168 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → ¬ (𝑑‘0) ∈ 𝐵) |
169 | 167, 168 | eqneltrd 2857 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → ¬ (𝑑‘(◡𝑇‘𝑋)) ∈ 𝐵) |
170 | 162, 169 | eqneltrd 2857 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → ¬ ((𝑑 ∘ ◡𝑇)‘𝑋) ∈ 𝐵) |
171 | | fveq1 6716 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝑑 ∘ ◡𝑇) → (𝑐‘𝑋) = ((𝑑 ∘ ◡𝑇)‘𝑋)) |
172 | 171 | eleq1d 2822 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = (𝑑 ∘ ◡𝑇) → ((𝑐‘𝑋) ∈ 𝐵 ↔ ((𝑑 ∘ ◡𝑇)‘𝑋) ∈ 𝐵)) |
173 | 172 | notbid 321 |
. . . . . . . . . . . . 13
⊢ (𝑐 = (𝑑 ∘ ◡𝑇) → (¬ (𝑐‘𝑋) ∈ 𝐵 ↔ ¬ ((𝑑 ∘ ◡𝑇)‘𝑋) ∈ 𝐵)) |
174 | 173 | elrab 3602 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∘ ◡𝑇) ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑋) ∈ 𝐵} ↔ ((𝑑 ∘ ◡𝑇) ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ ((𝑑 ∘ ◡𝑇)‘𝑋) ∈ 𝐵)) |
175 | 157, 170,
174 | sylanbrc 586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → (𝑑 ∘ ◡𝑇) ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑋) ∈ 𝐵}) |
176 | 175, 18 | eleqtrrdi 2849 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) ∧ ¬ (𝑑‘0) ∈ 𝐵) → (𝑑 ∘ ◡𝑇) ∈ 𝑃) |
177 | 176 | anasss 470 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) → (𝑑 ∘ ◡𝑇) ∈ 𝑃) |
178 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) ∧ 𝑐 = (𝑑 ∘ ◡𝑇)) → 𝑐 = (𝑑 ∘ ◡𝑇)) |
179 | 178 | coeq1d 5730 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) ∧ 𝑐 = (𝑑 ∘ ◡𝑇)) → (𝑐 ∘ 𝑇) = ((𝑑 ∘ ◡𝑇) ∘ 𝑇)) |
180 | 179 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) ∧ 𝑐 = (𝑑 ∘ ◡𝑇)) → (𝑑 = (𝑐 ∘ 𝑇) ↔ 𝑑 = ((𝑑 ∘ ◡𝑇) ∘ 𝑇))) |
181 | | f1ococnv1 6689 |
. . . . . . . . . . . . . 14
⊢ (𝑇:(0..^𝑆)–1-1-onto→(0..^𝑆) → (◡𝑇 ∘ 𝑇) = ( I ↾ (0..^𝑆))) |
182 | 13, 181 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (◡𝑇 ∘ 𝑇) = ( I ↾ (0..^𝑆))) |
183 | 182 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) → (◡𝑇 ∘ 𝑇) = ( I ↾ (0..^𝑆))) |
184 | 183 | coeq2d 5731 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) → (𝑑 ∘ (◡𝑇 ∘ 𝑇)) = (𝑑 ∘ ( I ↾ (0..^𝑆)))) |
185 | 114 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) → 𝑑:(0..^𝑆)⟶𝐴) |
186 | | fcoi1 6593 |
. . . . . . . . . . . 12
⊢ (𝑑:(0..^𝑆)⟶𝐴 → (𝑑 ∘ ( I ↾ (0..^𝑆))) = 𝑑) |
187 | 185, 186 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) → (𝑑 ∘ ( I ↾ (0..^𝑆))) = 𝑑) |
188 | 184, 187 | eqtr2d 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) → 𝑑 = (𝑑 ∘ (◡𝑇 ∘ 𝑇))) |
189 | | coass 6129 |
. . . . . . . . . 10
⊢ ((𝑑 ∘ ◡𝑇) ∘ 𝑇) = (𝑑 ∘ (◡𝑇 ∘ 𝑇)) |
190 | 188, 189 | eqtr4di 2796 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) → 𝑑 = ((𝑑 ∘ ◡𝑇) ∘ 𝑇)) |
191 | 177, 180,
190 | rspcedvd 3540 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) → ∃𝑐 ∈ 𝑃 𝑑 = (𝑐 ∘ 𝑇)) |
192 | 109, 191 | impbida 801 |
. . . . . . 7
⊢ (𝜑 → (∃𝑐 ∈ 𝑃 𝑑 = (𝑐 ∘ 𝑇) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵))) |
193 | 38, 192 | bitrd 282 |
. . . . . 6
⊢ (𝜑 → (𝑑 ∈ ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) “ 𝑃) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵))) |
194 | | fveq1 6716 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → (𝑐‘0) = (𝑑‘0)) |
195 | 194 | eleq1d 2822 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → ((𝑐‘0) ∈ 𝐵 ↔ (𝑑‘0) ∈ 𝐵)) |
196 | 195 | notbid 321 |
. . . . . . 7
⊢ (𝑐 = 𝑑 → (¬ (𝑐‘0) ∈ 𝐵 ↔ ¬ (𝑑‘0) ∈ 𝐵)) |
197 | 196 | elrab 3602 |
. . . . . 6
⊢ (𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘0) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘0) ∈ 𝐵)) |
198 | 193, 197 | bitr4di 292 |
. . . . 5
⊢ (𝜑 → (𝑑 ∈ ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) “ 𝑃) ↔ 𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘0) ∈ 𝐵})) |
199 | 198 | eqrdv 2735 |
. . . 4
⊢ (𝜑 → ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) “ 𝑃) = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘0) ∈ 𝐵}) |
200 | | reprpmtf1o.o |
. . . 4
⊢ 𝑂 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘0) ∈ 𝐵} |
201 | 199, 200 | eqtr4di 2796 |
. . 3
⊢ (𝜑 → ((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) “ 𝑃) = 𝑂) |
202 | 34, 35, 201 | f1oeq123d 6655 |
. 2
⊢ (𝜑 → (((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) ↾ 𝑃):𝑃–1-1-onto→((𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ↦ (𝑐 ∘ 𝑇)) “ 𝑃) ↔ 𝐹:𝑃–1-1-onto→𝑂)) |
203 | 30, 202 | mpbid 235 |
1
⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑂) |