Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chintcl | Structured version Visualization version GIF version |
Description: The intersection (infimum) of a nonempty subset of Cℋ belongs to Cℋ. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chintcl | ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4836 | . . 3 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ∩ 𝐴 = ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ )) | |
2 | 1 | eleq1d 2817 | . 2 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (∩ 𝐴 ∈ Cℋ ↔ ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ∈ Cℋ )) |
3 | sseq1 3900 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (𝐴 ⊆ Cℋ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ )) | |
4 | neeq1 2996 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (𝐴 ≠ ∅ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅)) | |
5 | 3, 4 | anbi12d 634 | . . . 4 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) ↔ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅))) |
6 | sseq1 3900 | . . . . 5 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ( Cℋ ⊆ Cℋ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ )) | |
7 | neeq1 2996 | . . . . 5 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ( Cℋ ≠ ∅ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅)) | |
8 | 6, 7 | anbi12d 634 | . . . 4 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅) ↔ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅))) |
9 | ssid 3897 | . . . . 5 ⊢ Cℋ ⊆ Cℋ | |
10 | h0elch 29182 | . . . . . 6 ⊢ 0ℋ ∈ Cℋ | |
11 | 10 | ne0ii 4224 | . . . . 5 ⊢ Cℋ ≠ ∅ |
12 | 9, 11 | pm3.2i 474 | . . . 4 ⊢ ( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅) |
13 | 5, 8, 12 | elimhyp 4476 | . . 3 ⊢ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅) |
14 | 13 | chintcli 29258 | . 2 ⊢ ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ∈ Cℋ |
15 | 2, 14 | dedth 4469 | 1 ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 ⊆ wss 3841 ∅c0 4209 ifcif 4411 ∩ cint 4833 Cℋ cch 28856 0ℋc0h 28862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 ax-addf 10687 ax-mulf 10688 ax-hilex 28926 ax-hfvadd 28927 ax-hvcom 28928 ax-hvass 28929 ax-hv0cl 28930 ax-hvaddid 28931 ax-hfvmul 28932 ax-hvmulid 28933 ax-hvmulass 28934 ax-hvdistr1 28935 ax-hvdistr2 28936 ax-hvmul0 28937 ax-hfi 29006 ax-his1 29009 ax-his2 29010 ax-his3 29011 ax-his4 29012 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-map 8432 df-pm 8433 df-en 8549 df-dom 8550 df-sdom 8551 df-sup 8972 df-inf 8973 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-n0 11970 df-z 12056 df-uz 12318 df-q 12424 df-rp 12466 df-xneg 12583 df-xadd 12584 df-xmul 12585 df-icc 12821 df-seq 13454 df-exp 13515 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-topgen 16813 df-psmet 20202 df-xmet 20203 df-met 20204 df-bl 20205 df-mopn 20206 df-top 21638 df-topon 21655 df-bases 21690 df-lm 21973 df-haus 22059 df-grpo 28420 df-gid 28421 df-ginv 28422 df-gdiv 28423 df-ablo 28472 df-vc 28486 df-nv 28519 df-va 28522 df-ba 28523 df-sm 28524 df-0v 28525 df-vs 28526 df-nmcv 28527 df-ims 28528 df-hnorm 28895 df-hvsub 28898 df-hlim 28899 df-sh 29134 df-ch 29148 df-ch0 29180 |
This theorem is referenced by: ococin 29335 |
Copyright terms: Public domain | W3C validator |