| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chintcl | Structured version Visualization version GIF version | ||
| Description: The intersection (infimum) of a nonempty subset of Cℋ belongs to Cℋ. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chintcl | ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq 4900 | . . 3 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ∩ 𝐴 = ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ )) | |
| 2 | 1 | eleq1d 2818 | . 2 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (∩ 𝐴 ∈ Cℋ ↔ ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ∈ Cℋ )) |
| 3 | sseq1 3956 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (𝐴 ⊆ Cℋ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ )) | |
| 4 | neeq1 2991 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (𝐴 ≠ ∅ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) ↔ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅))) |
| 6 | sseq1 3956 | . . . . 5 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ( Cℋ ⊆ Cℋ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ )) | |
| 7 | neeq1 2991 | . . . . 5 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ( Cℋ ≠ ∅ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅)) | |
| 8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅) ↔ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅))) |
| 9 | ssid 3953 | . . . . 5 ⊢ Cℋ ⊆ Cℋ | |
| 10 | h0elch 31237 | . . . . . 6 ⊢ 0ℋ ∈ Cℋ | |
| 11 | 10 | ne0ii 4293 | . . . . 5 ⊢ Cℋ ≠ ∅ |
| 12 | 9, 11 | pm3.2i 470 | . . . 4 ⊢ ( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅) |
| 13 | 5, 8, 12 | elimhyp 4540 | . . 3 ⊢ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅) |
| 14 | 13 | chintcli 31313 | . 2 ⊢ ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ∈ Cℋ |
| 15 | 2, 14 | dedth 4533 | 1 ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 ifcif 4474 ∩ cint 4897 Cℋ cch 30911 0ℋc0h 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 ax-hilex 30981 ax-hfvadd 30982 ax-hvcom 30983 ax-hvass 30984 ax-hv0cl 30985 ax-hvaddid 30986 ax-hfvmul 30987 ax-hvmulid 30988 ax-hvmulass 30989 ax-hvdistr1 30990 ax-hvdistr2 30991 ax-hvmul0 30992 ax-hfi 31061 ax-his1 31064 ax-his2 31065 ax-his3 31066 ax-his4 31067 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-icc 13254 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-top 22810 df-topon 22827 df-bases 22862 df-lm 23145 df-haus 23231 df-grpo 30475 df-gid 30476 df-ginv 30477 df-gdiv 30478 df-ablo 30527 df-vc 30541 df-nv 30574 df-va 30577 df-ba 30578 df-sm 30579 df-0v 30580 df-vs 30581 df-nmcv 30582 df-ims 30583 df-hnorm 30950 df-hvsub 30953 df-hlim 30954 df-sh 31189 df-ch 31203 df-ch0 31235 |
| This theorem is referenced by: ococin 31390 |
| Copyright terms: Public domain | W3C validator |