![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chintcl | Structured version Visualization version GIF version |
Description: The intersection (infimum) of a nonempty subset of Cℋ belongs to Cℋ. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chintcl | ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4953 | . . 3 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ∩ 𝐴 = ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ )) | |
2 | 1 | eleq1d 2817 | . 2 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (∩ 𝐴 ∈ Cℋ ↔ ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ∈ Cℋ )) |
3 | sseq1 4007 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (𝐴 ⊆ Cℋ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ )) | |
4 | neeq1 3002 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (𝐴 ≠ ∅ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) ↔ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅))) |
6 | sseq1 4007 | . . . . 5 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ( Cℋ ⊆ Cℋ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ )) | |
7 | neeq1 3002 | . . . . 5 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ( Cℋ ≠ ∅ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅)) | |
8 | 6, 7 | anbi12d 630 | . . . 4 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅) ↔ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅))) |
9 | ssid 4004 | . . . . 5 ⊢ Cℋ ⊆ Cℋ | |
10 | h0elch 30776 | . . . . . 6 ⊢ 0ℋ ∈ Cℋ | |
11 | 10 | ne0ii 4337 | . . . . 5 ⊢ Cℋ ≠ ∅ |
12 | 9, 11 | pm3.2i 470 | . . . 4 ⊢ ( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅) |
13 | 5, 8, 12 | elimhyp 4593 | . . 3 ⊢ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅) |
14 | 13 | chintcli 30852 | . 2 ⊢ ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ∈ Cℋ |
15 | 2, 14 | dedth 4586 | 1 ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ⊆ wss 3948 ∅c0 4322 ifcif 4528 ∩ cint 4950 Cℋ cch 30450 0ℋc0h 30456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 ax-hilex 30520 ax-hfvadd 30521 ax-hvcom 30522 ax-hvass 30523 ax-hv0cl 30524 ax-hvaddid 30525 ax-hfvmul 30526 ax-hvmulid 30527 ax-hvmulass 30528 ax-hvdistr1 30529 ax-hvdistr2 30530 ax-hvmul0 30531 ax-hfi 30600 ax-his1 30603 ax-his2 30604 ax-his3 30605 ax-his4 30606 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-pm 8826 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-icc 13336 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-top 22617 df-topon 22634 df-bases 22670 df-lm 22954 df-haus 23040 df-grpo 30014 df-gid 30015 df-ginv 30016 df-gdiv 30017 df-ablo 30066 df-vc 30080 df-nv 30113 df-va 30116 df-ba 30117 df-sm 30118 df-0v 30119 df-vs 30120 df-nmcv 30121 df-ims 30122 df-hnorm 30489 df-hvsub 30492 df-hlim 30493 df-sh 30728 df-ch 30742 df-ch0 30774 |
This theorem is referenced by: ococin 30929 |
Copyright terms: Public domain | W3C validator |