| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chintcl | Structured version Visualization version GIF version | ||
| Description: The intersection (infimum) of a nonempty subset of Cℋ belongs to Cℋ. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chintcl | ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq 4925 | . . 3 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ∩ 𝐴 = ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ )) | |
| 2 | 1 | eleq1d 2819 | . 2 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (∩ 𝐴 ∈ Cℋ ↔ ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ∈ Cℋ )) |
| 3 | sseq1 3984 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (𝐴 ⊆ Cℋ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ )) | |
| 4 | neeq1 2994 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (𝐴 ≠ ∅ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝐴 = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) ↔ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅))) |
| 6 | sseq1 3984 | . . . . 5 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ( Cℋ ⊆ Cℋ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ )) | |
| 7 | neeq1 2994 | . . . . 5 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → ( Cℋ ≠ ∅ ↔ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅)) | |
| 8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ ( Cℋ = if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) → (( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅) ↔ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅))) |
| 9 | ssid 3981 | . . . . 5 ⊢ Cℋ ⊆ Cℋ | |
| 10 | h0elch 31236 | . . . . . 6 ⊢ 0ℋ ∈ Cℋ | |
| 11 | 10 | ne0ii 4319 | . . . . 5 ⊢ Cℋ ≠ ∅ |
| 12 | 9, 11 | pm3.2i 470 | . . . 4 ⊢ ( Cℋ ⊆ Cℋ ∧ Cℋ ≠ ∅) |
| 13 | 5, 8, 12 | elimhyp 4566 | . . 3 ⊢ (if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ⊆ Cℋ ∧ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ≠ ∅) |
| 14 | 13 | chintcli 31312 | . 2 ⊢ ∩ if((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅), 𝐴, Cℋ ) ∈ Cℋ |
| 15 | 2, 14 | dedth 4559 | 1 ⊢ ((𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 ∅c0 4308 ifcif 4500 ∩ cint 4922 Cℋ cch 30910 0ℋc0h 30916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 ax-hilex 30980 ax-hfvadd 30981 ax-hvcom 30982 ax-hvass 30983 ax-hv0cl 30984 ax-hvaddid 30985 ax-hfvmul 30986 ax-hvmulid 30987 ax-hvmulass 30988 ax-hvdistr1 30989 ax-hvdistr2 30990 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-lm 23167 df-haus 23253 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-vs 30580 df-nmcv 30581 df-ims 30582 df-hnorm 30949 df-hvsub 30952 df-hlim 30953 df-sh 31188 df-ch 31202 df-ch0 31234 |
| This theorem is referenced by: ococin 31389 |
| Copyright terms: Public domain | W3C validator |