MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoe Structured version   Visualization version   GIF version

Theorem oeoe 8240
Description: Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.)
Assertion
Ref Expression
oeoe ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))

Proof of Theorem oeoe
StepHypRef Expression
1 oveq2 7163 . . . . . . . . . . . 12 (𝐵 = ∅ → (∅ ↑o 𝐵) = (∅ ↑o ∅))
2 oe0m0 8160 . . . . . . . . . . . 12 (∅ ↑o ∅) = 1o
31, 2eqtrdi 2809 . . . . . . . . . . 11 (𝐵 = ∅ → (∅ ↑o 𝐵) = 1o)
43oveq1d 7170 . . . . . . . . . 10 (𝐵 = ∅ → ((∅ ↑o 𝐵) ↑o 𝐶) = (1oo 𝐶))
5 oe1m 8186 . . . . . . . . . 10 (𝐶 ∈ On → (1oo 𝐶) = 1o)
64, 5sylan9eqr 2815 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝐵 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
76adantll 713 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
8 oveq2 7163 . . . . . . . . . 10 (𝐶 = ∅ → ((∅ ↑o 𝐵) ↑o 𝐶) = ((∅ ↑o 𝐵) ↑o ∅))
9 0elon 6226 . . . . . . . . . . . 12 ∅ ∈ On
10 oecl 8177 . . . . . . . . . . . 12 ((∅ ∈ On ∧ 𝐵 ∈ On) → (∅ ↑o 𝐵) ∈ On)
119, 10mpan 689 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ↑o 𝐵) ∈ On)
12 oe0 8162 . . . . . . . . . . 11 ((∅ ↑o 𝐵) ∈ On → ((∅ ↑o 𝐵) ↑o ∅) = 1o)
1311, 12syl 17 . . . . . . . . . 10 (𝐵 ∈ On → ((∅ ↑o 𝐵) ↑o ∅) = 1o)
148, 13sylan9eqr 2815 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
1514adantlr 714 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐶 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
167, 15jaodan 955 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
17 om00 8216 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ·o 𝐶) = ∅ ↔ (𝐵 = ∅ ∨ 𝐶 = ∅)))
1817biimpar 481 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → (𝐵 ·o 𝐶) = ∅)
1918oveq2d 7171 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → (∅ ↑o (𝐵 ·o 𝐶)) = (∅ ↑o ∅))
2019, 2eqtrdi 2809 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → (∅ ↑o (𝐵 ·o 𝐶)) = 1o)
2116, 20eqtr4d 2796 . . . . . 6 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
22 on0eln0 6228 . . . . . . . . . 10 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
23 on0eln0 6228 . . . . . . . . . 10 (𝐶 ∈ On → (∅ ∈ 𝐶𝐶 ≠ ∅))
2422, 23bi2anan9 638 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐵 ≠ ∅ ∧ 𝐶 ≠ ∅)))
25 neanior 3043 . . . . . . . . 9 ((𝐵 ≠ ∅ ∧ 𝐶 ≠ ∅) ↔ ¬ (𝐵 = ∅ ∨ 𝐶 = ∅))
2624, 25bitrdi 290 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ ¬ (𝐵 = ∅ ∨ 𝐶 = ∅)))
27 oe0m1 8161 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
2827biimpa 480 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
2928oveq1d 7170 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o 𝐶))
30 oe0m1 8161 . . . . . . . . . . . . 13 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ (∅ ↑o 𝐶) = ∅))
3130biimpa 480 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ ∅ ∈ 𝐶) → (∅ ↑o 𝐶) = ∅)
3229, 31sylan9eq 2813 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ↑o 𝐶) = ∅)
3332an4s 659 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ↑o 𝐶) = ∅)
34 om00el 8217 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵 ·o 𝐶) ↔ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)))
35 omcl 8176 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ·o 𝐶) ∈ On)
36 oe0m1 8161 . . . . . . . . . . . . 13 ((𝐵 ·o 𝐶) ∈ On → (∅ ∈ (𝐵 ·o 𝐶) ↔ (∅ ↑o (𝐵 ·o 𝐶)) = ∅))
3735, 36syl 17 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵 ·o 𝐶) ↔ (∅ ↑o (𝐵 ·o 𝐶)) = ∅))
3834, 37bitr3d 284 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (∅ ↑o (𝐵 ·o 𝐶)) = ∅))
3938biimpa 480 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)) → (∅ ↑o (𝐵 ·o 𝐶)) = ∅)
4033, 39eqtr4d 2796 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
4140ex 416 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶))))
4226, 41sylbird 263 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ (𝐵 = ∅ ∨ 𝐶 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶))))
4342imp 410 . . . . . 6 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ¬ (𝐵 = ∅ ∨ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
4421, 43pm2.61dan 812 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
45 oveq1 7162 . . . . . . 7 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
4645oveq1d 7170 . . . . . 6 (𝐴 = ∅ → ((𝐴o 𝐵) ↑o 𝐶) = ((∅ ↑o 𝐵) ↑o 𝐶))
47 oveq1 7162 . . . . . 6 (𝐴 = ∅ → (𝐴o (𝐵 ·o 𝐶)) = (∅ ↑o (𝐵 ·o 𝐶)))
4846, 47eqeq12d 2774 . . . . 5 (𝐴 = ∅ → (((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)) ↔ ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶))))
4944, 48syl5ibr 249 . . . 4 (𝐴 = ∅ → ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
5049impcom 411 . . 3 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 = ∅) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
51 oveq1 7162 . . . . . . . . 9 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴o 𝐵) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵))
5251oveq1d 7170 . . . . . . . 8 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴o 𝐵) ↑o 𝐶) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶))
53 oveq1 7162 . . . . . . . 8 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴o (𝐵 ·o 𝐶)) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶)))
5452, 53eqeq12d 2774 . . . . . . 7 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)) ↔ ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶))))
5554imbi2d 344 . . . . . 6 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))) ↔ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶)))))
56 eleq1 2839 . . . . . . . . . 10 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴 ∈ On ↔ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On))
57 eleq2 2840 . . . . . . . . . 10 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈ 𝐴 ↔ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)))
5856, 57anbi12d 633 . . . . . . . . 9 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))))
59 eleq1 2839 . . . . . . . . . 10 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (1o ∈ On ↔ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On))
60 eleq2 2840 . . . . . . . . . 10 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈ 1o ↔ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)))
6159, 60anbi12d 633 . . . . . . . . 9 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((1o ∈ On ∧ ∅ ∈ 1o) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))))
62 1on 8124 . . . . . . . . . 10 1o ∈ On
63 0lt1o 8144 . . . . . . . . . 10 ∅ ∈ 1o
6462, 63pm3.2i 474 . . . . . . . . 9 (1o ∈ On ∧ ∅ ∈ 1o)
6558, 61, 64elimhyp 4488 . . . . . . . 8 (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))
6665simpli 487 . . . . . . 7 if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On
6765simpri 489 . . . . . . 7 ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)
6866, 67oeoelem 8239 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶)))
6955, 68dedth 4481 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
7069imp 410 . . . 4 (((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
7170an32s 651 . . 3 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
7250, 71oe0lem 8153 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
73723impb 1112 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2951  c0 4227  ifcif 4423  Oncon0 6173  (class class class)co 7155  1oc1o 8110   ·o comu 8115  o coe 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-oadd 8121  df-omul 8122  df-oexp 8123
This theorem is referenced by:  infxpenc  9483
  Copyright terms: Public domain W3C validator