MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoe Structured version   Visualization version   GIF version

Theorem oeoe 8075
Description: Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.)
Assertion
Ref Expression
oeoe ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))

Proof of Theorem oeoe
StepHypRef Expression
1 oveq2 7024 . . . . . . . . . . . 12 (𝐵 = ∅ → (∅ ↑o 𝐵) = (∅ ↑o ∅))
2 oe0m0 7996 . . . . . . . . . . . 12 (∅ ↑o ∅) = 1o
31, 2syl6eq 2847 . . . . . . . . . . 11 (𝐵 = ∅ → (∅ ↑o 𝐵) = 1o)
43oveq1d 7031 . . . . . . . . . 10 (𝐵 = ∅ → ((∅ ↑o 𝐵) ↑o 𝐶) = (1oo 𝐶))
5 oe1m 8021 . . . . . . . . . 10 (𝐶 ∈ On → (1oo 𝐶) = 1o)
64, 5sylan9eqr 2853 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝐵 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
76adantll 710 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
8 oveq2 7024 . . . . . . . . . 10 (𝐶 = ∅ → ((∅ ↑o 𝐵) ↑o 𝐶) = ((∅ ↑o 𝐵) ↑o ∅))
9 0elon 6119 . . . . . . . . . . . 12 ∅ ∈ On
10 oecl 8013 . . . . . . . . . . . 12 ((∅ ∈ On ∧ 𝐵 ∈ On) → (∅ ↑o 𝐵) ∈ On)
119, 10mpan 686 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ↑o 𝐵) ∈ On)
12 oe0 7998 . . . . . . . . . . 11 ((∅ ↑o 𝐵) ∈ On → ((∅ ↑o 𝐵) ↑o ∅) = 1o)
1311, 12syl 17 . . . . . . . . . 10 (𝐵 ∈ On → ((∅ ↑o 𝐵) ↑o ∅) = 1o)
148, 13sylan9eqr 2853 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
1514adantlr 711 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐶 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
167, 15jaodan 952 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ↑o 𝐶) = 1o)
17 om00 8051 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ·o 𝐶) = ∅ ↔ (𝐵 = ∅ ∨ 𝐶 = ∅)))
1817biimpar 478 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → (𝐵 ·o 𝐶) = ∅)
1918oveq2d 7032 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → (∅ ↑o (𝐵 ·o 𝐶)) = (∅ ↑o ∅))
2019, 2syl6eq 2847 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → (∅ ↑o (𝐵 ·o 𝐶)) = 1o)
2116, 20eqtr4d 2834 . . . . . 6 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∨ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
22 on0eln0 6121 . . . . . . . . . 10 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
23 on0eln0 6121 . . . . . . . . . 10 (𝐶 ∈ On → (∅ ∈ 𝐶𝐶 ≠ ∅))
2422, 23bi2anan9 635 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐵 ≠ ∅ ∧ 𝐶 ≠ ∅)))
25 neanior 3077 . . . . . . . . 9 ((𝐵 ≠ ∅ ∧ 𝐶 ≠ ∅) ↔ ¬ (𝐵 = ∅ ∨ 𝐶 = ∅))
2624, 25syl6bb 288 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ ¬ (𝐵 = ∅ ∨ 𝐶 = ∅)))
27 oe0m1 7997 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
2827biimpa 477 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
2928oveq1d 7031 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o 𝐶))
30 oe0m1 7997 . . . . . . . . . . . . 13 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ (∅ ↑o 𝐶) = ∅))
3130biimpa 477 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ ∅ ∈ 𝐶) → (∅ ↑o 𝐶) = ∅)
3229, 31sylan9eq 2851 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ↑o 𝐶) = ∅)
3332an4s 656 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ↑o 𝐶) = ∅)
34 om00el 8052 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵 ·o 𝐶) ↔ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)))
35 omcl 8012 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ·o 𝐶) ∈ On)
36 oe0m1 7997 . . . . . . . . . . . . 13 ((𝐵 ·o 𝐶) ∈ On → (∅ ∈ (𝐵 ·o 𝐶) ↔ (∅ ↑o (𝐵 ·o 𝐶)) = ∅))
3735, 36syl 17 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵 ·o 𝐶) ↔ (∅ ↑o (𝐵 ·o 𝐶)) = ∅))
3834, 37bitr3d 282 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (∅ ↑o (𝐵 ·o 𝐶)) = ∅))
3938biimpa 477 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)) → (∅ ↑o (𝐵 ·o 𝐶)) = ∅)
4033, 39eqtr4d 2834 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
4140ex 413 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶))))
4226, 41sylbird 261 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ (𝐵 = ∅ ∨ 𝐶 = ∅) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶))))
4342imp 407 . . . . . 6 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ¬ (𝐵 = ∅ ∨ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
4421, 43pm2.61dan 809 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶)))
45 oveq1 7023 . . . . . . 7 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
4645oveq1d 7031 . . . . . 6 (𝐴 = ∅ → ((𝐴o 𝐵) ↑o 𝐶) = ((∅ ↑o 𝐵) ↑o 𝐶))
47 oveq1 7023 . . . . . 6 (𝐴 = ∅ → (𝐴o (𝐵 ·o 𝐶)) = (∅ ↑o (𝐵 ·o 𝐶)))
4846, 47eqeq12d 2810 . . . . 5 (𝐴 = ∅ → (((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)) ↔ ((∅ ↑o 𝐵) ↑o 𝐶) = (∅ ↑o (𝐵 ·o 𝐶))))
4944, 48syl5ibr 247 . . . 4 (𝐴 = ∅ → ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
5049impcom 408 . . 3 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 = ∅) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
51 oveq1 7023 . . . . . . . . 9 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴o 𝐵) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵))
5251oveq1d 7031 . . . . . . . 8 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴o 𝐵) ↑o 𝐶) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶))
53 oveq1 7023 . . . . . . . 8 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴o (𝐵 ·o 𝐶)) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶)))
5452, 53eqeq12d 2810 . . . . . . 7 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)) ↔ ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶))))
5554imbi2d 342 . . . . . 6 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))) ↔ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶)))))
56 eleq1 2870 . . . . . . . . . 10 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴 ∈ On ↔ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On))
57 eleq2 2871 . . . . . . . . . 10 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈ 𝐴 ↔ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)))
5856, 57anbi12d 630 . . . . . . . . 9 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))))
59 eleq1 2870 . . . . . . . . . 10 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (1o ∈ On ↔ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On))
60 eleq2 2871 . . . . . . . . . 10 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈ 1o ↔ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)))
6159, 60anbi12d 630 . . . . . . . . 9 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((1o ∈ On ∧ ∅ ∈ 1o) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))))
62 1on 7960 . . . . . . . . . 10 1o ∈ On
63 0lt1o 7980 . . . . . . . . . 10 ∅ ∈ 1o
6462, 63pm3.2i 471 . . . . . . . . 9 (1o ∈ On ∧ ∅ ∈ 1o)
6558, 61, 64elimhyp 4444 . . . . . . . 8 (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))
6665simpli 484 . . . . . . 7 if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On
6765simpri 486 . . . . . . 7 ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)
6866, 67oeoelem 8074 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 ·o 𝐶)))
6955, 68dedth 4437 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
7069imp 407 . . . 4 (((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
7170an32s 648 . . 3 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
7250, 71oe0lem 7989 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
73723impb 1108 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wne 2984  c0 4211  ifcif 4381  Oncon0 6066  (class class class)co 7016  1oc1o 7946   ·o comu 7951  o coe 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-omul 7958  df-oexp 7959
This theorem is referenced by:  infxpenc  9290
  Copyright terms: Public domain W3C validator