| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > spanun | Structured version Visualization version GIF version | ||
| Description: The span of a union is the subspace sum of spans. (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spanun | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (span‘(𝐴 ∪ 𝐵)) = ((span‘𝐴) +ℋ (span‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4141 | . . . 4 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (𝐴 ∪ 𝐵) = (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) | |
| 2 | 1 | fveq2d 6885 | . . 3 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (span‘(𝐴 ∪ 𝐵)) = (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵))) |
| 3 | fveq2 6881 | . . . 4 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (span‘𝐴) = (span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ))) | |
| 4 | 3 | oveq1d 7425 | . . 3 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ((span‘𝐴) +ℋ (span‘𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘𝐵))) |
| 5 | 2, 4 | eqeq12d 2752 | . 2 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ((span‘(𝐴 ∪ 𝐵)) = ((span‘𝐴) +ℋ (span‘𝐵)) ↔ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘𝐵)))) |
| 6 | uneq2 4142 | . . . 4 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵) = (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) | |
| 7 | 6 | fveq2d 6885 | . . 3 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ)))) |
| 8 | fveq2 6881 | . . . 4 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (span‘𝐵) = (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ))) | |
| 9 | 8 | oveq2d 7426 | . . 3 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ)))) |
| 10 | 7, 9 | eqeq12d 2752 | . 2 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ((span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘𝐵)) ↔ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ))))) |
| 11 | sseq1 3989 | . . . 4 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (𝐴 ⊆ ℋ ↔ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ)) | |
| 12 | sseq1 3989 | . . . 4 ⊢ ( ℋ = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ( ℋ ⊆ ℋ ↔ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ)) | |
| 13 | ssid 3986 | . . . 4 ⊢ ℋ ⊆ ℋ | |
| 14 | 11, 12, 13 | elimhyp 4571 | . . 3 ⊢ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ |
| 15 | sseq1 3989 | . . . 4 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (𝐵 ⊆ ℋ ↔ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ)) | |
| 16 | sseq1 3989 | . . . 4 ⊢ ( ℋ = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ( ℋ ⊆ ℋ ↔ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ)) | |
| 17 | 15, 16, 13 | elimhyp 4571 | . . 3 ⊢ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ |
| 18 | 14, 17 | spanuni 31530 | . 2 ⊢ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ))) |
| 19 | 5, 10, 18 | dedth2h 4565 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (span‘(𝐴 ∪ 𝐵)) = ((span‘𝐴) +ℋ (span‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∪ cun 3929 ⊆ wss 3931 ifcif 4505 ‘cfv 6536 (class class class)co 7410 ℋchba 30905 +ℋ cph 30917 spancspn 30918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvmulass 30993 ax-hvdistr1 30994 ax-hvdistr2 30995 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his2 31069 ax-his3 31070 ax-his4 31071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-icc 13374 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-top 22837 df-topon 22854 df-bases 22889 df-lm 23172 df-haus 23258 df-grpo 30479 df-gid 30480 df-ginv 30481 df-gdiv 30482 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-vs 30585 df-nmcv 30586 df-ims 30587 df-hnorm 30954 df-hvsub 30957 df-hlim 30958 df-sh 31193 df-ch 31207 df-ch0 31239 df-shs 31294 df-span 31295 |
| This theorem is referenced by: spanpr 31566 superpos 32340 |
| Copyright terms: Public domain | W3C validator |