HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanun Structured version   Visualization version   GIF version

Theorem spanun 31531
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
spanun ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵)))

Proof of Theorem spanun
StepHypRef Expression
1 uneq1 4141 . . . 4 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (𝐴𝐵) = (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵))
21fveq2d 6885 . . 3 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (span‘(𝐴𝐵)) = (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)))
3 fveq2 6881 . . . 4 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (span‘𝐴) = (span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)))
43oveq1d 7425 . . 3 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ((span‘𝐴) + (span‘𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘𝐵)))
52, 4eqeq12d 2752 . 2 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ((span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵)) ↔ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘𝐵))))
6 uneq2 4142 . . . 4 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵) = (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ)))
76fveq2d 6885 . . 3 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))))
8 fveq2 6881 . . . 4 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (span‘𝐵) = (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ)))
98oveq2d 7426 . . 3 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ))))
107, 9eqeq12d 2752 . 2 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ((span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘𝐵)) ↔ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ)))))
11 sseq1 3989 . . . 4 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (𝐴 ⊆ ℋ ↔ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ))
12 sseq1 3989 . . . 4 ( ℋ = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ( ℋ ⊆ ℋ ↔ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ))
13 ssid 3986 . . . 4 ℋ ⊆ ℋ
1411, 12, 13elimhyp 4571 . . 3 if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ
15 sseq1 3989 . . . 4 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (𝐵 ⊆ ℋ ↔ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ))
16 sseq1 3989 . . . 4 ( ℋ = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ( ℋ ⊆ ℋ ↔ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ))
1715, 16, 13elimhyp 4571 . . 3 if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ
1814, 17spanuni 31530 . 2 (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ)))
195, 10, 18dedth2h 4565 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cun 3929  wss 3931  ifcif 4505  cfv 6536  (class class class)co 7410  chba 30905   + cph 30917  spancspn 30918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214  ax-hilex 30985  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvmulass 30993  ax-hvdistr1 30994  ax-hvdistr2 30995  ax-hvmul0 30996  ax-hfi 31065  ax-his1 31068  ax-his2 31069  ax-his3 31070  ax-his4 31071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-icc 13374  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-lm 23172  df-haus 23258  df-grpo 30479  df-gid 30480  df-ginv 30481  df-gdiv 30482  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-vs 30585  df-nmcv 30586  df-ims 30587  df-hnorm 30954  df-hvsub 30957  df-hlim 30958  df-sh 31193  df-ch 31207  df-ch0 31239  df-shs 31294  df-span 31295
This theorem is referenced by:  spanpr  31566  superpos  32340
  Copyright terms: Public domain W3C validator