| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > spanun | Structured version Visualization version GIF version | ||
| Description: The span of a union is the subspace sum of spans. (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spanun | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (span‘(𝐴 ∪ 𝐵)) = ((span‘𝐴) +ℋ (span‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4126 | . . . 4 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (𝐴 ∪ 𝐵) = (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) | |
| 2 | 1 | fveq2d 6864 | . . 3 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (span‘(𝐴 ∪ 𝐵)) = (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵))) |
| 3 | fveq2 6860 | . . . 4 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (span‘𝐴) = (span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ))) | |
| 4 | 3 | oveq1d 7404 | . . 3 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ((span‘𝐴) +ℋ (span‘𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘𝐵))) |
| 5 | 2, 4 | eqeq12d 2746 | . 2 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ((span‘(𝐴 ∪ 𝐵)) = ((span‘𝐴) +ℋ (span‘𝐵)) ↔ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘𝐵)))) |
| 6 | uneq2 4127 | . . . 4 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵) = (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) | |
| 7 | 6 | fveq2d 6864 | . . 3 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ)))) |
| 8 | fveq2 6860 | . . . 4 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (span‘𝐵) = (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ))) | |
| 9 | 8 | oveq2d 7405 | . . 3 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ)))) |
| 10 | 7, 9 | eqeq12d 2746 | . 2 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ((span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘𝐵)) ↔ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ))))) |
| 11 | sseq1 3974 | . . . 4 ⊢ (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (𝐴 ⊆ ℋ ↔ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ)) | |
| 12 | sseq1 3974 | . . . 4 ⊢ ( ℋ = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ( ℋ ⊆ ℋ ↔ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ)) | |
| 13 | ssid 3971 | . . . 4 ⊢ ℋ ⊆ ℋ | |
| 14 | 11, 12, 13 | elimhyp 4556 | . . 3 ⊢ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ |
| 15 | sseq1 3974 | . . . 4 ⊢ (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (𝐵 ⊆ ℋ ↔ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ)) | |
| 16 | sseq1 3974 | . . . 4 ⊢ ( ℋ = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ( ℋ ⊆ ℋ ↔ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ)) | |
| 17 | 15, 16, 13 | elimhyp 4556 | . . 3 ⊢ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ |
| 18 | 14, 17 | spanuni 31479 | . 2 ⊢ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) +ℋ (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ))) |
| 19 | 5, 10, 18 | dedth2h 4550 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (span‘(𝐴 ∪ 𝐵)) = ((span‘𝐴) +ℋ (span‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∪ cun 3914 ⊆ wss 3916 ifcif 4490 ‘cfv 6513 (class class class)co 7389 ℋchba 30854 +ℋ cph 30866 spancspn 30867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 ax-hilex 30934 ax-hfvadd 30935 ax-hvcom 30936 ax-hvass 30937 ax-hv0cl 30938 ax-hvaddid 30939 ax-hfvmul 30940 ax-hvmulid 30941 ax-hvmulass 30942 ax-hvdistr1 30943 ax-hvdistr2 30944 ax-hvmul0 30945 ax-hfi 31014 ax-his1 31017 ax-his2 31018 ax-his3 31019 ax-his4 31020 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-icc 13319 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-top 22787 df-topon 22804 df-bases 22839 df-lm 23122 df-haus 23208 df-grpo 30428 df-gid 30429 df-ginv 30430 df-gdiv 30431 df-ablo 30480 df-vc 30494 df-nv 30527 df-va 30530 df-ba 30531 df-sm 30532 df-0v 30533 df-vs 30534 df-nmcv 30535 df-ims 30536 df-hnorm 30903 df-hvsub 30906 df-hlim 30907 df-sh 31142 df-ch 31156 df-ch0 31188 df-shs 31243 df-span 31244 |
| This theorem is referenced by: spanpr 31515 superpos 32289 |
| Copyright terms: Public domain | W3C validator |