![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > spanun | Structured version Visualization version GIF version |
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spanun | β’ ((π΄ β β β§ π΅ β β) β (spanβ(π΄ βͺ π΅)) = ((spanβπ΄) +β (spanβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4155 | . . . 4 β’ (π΄ = if(π΄ β β, π΄, β) β (π΄ βͺ π΅) = (if(π΄ β β, π΄, β) βͺ π΅)) | |
2 | 1 | fveq2d 6892 | . . 3 β’ (π΄ = if(π΄ β β, π΄, β) β (spanβ(π΄ βͺ π΅)) = (spanβ(if(π΄ β β, π΄, β) βͺ π΅))) |
3 | fveq2 6888 | . . . 4 β’ (π΄ = if(π΄ β β, π΄, β) β (spanβπ΄) = (spanβif(π΄ β β, π΄, β))) | |
4 | 3 | oveq1d 7420 | . . 3 β’ (π΄ = if(π΄ β β, π΄, β) β ((spanβπ΄) +β (spanβπ΅)) = ((spanβif(π΄ β β, π΄, β)) +β (spanβπ΅))) |
5 | 2, 4 | eqeq12d 2748 | . 2 β’ (π΄ = if(π΄ β β, π΄, β) β ((spanβ(π΄ βͺ π΅)) = ((spanβπ΄) +β (spanβπ΅)) β (spanβ(if(π΄ β β, π΄, β) βͺ π΅)) = ((spanβif(π΄ β β, π΄, β)) +β (spanβπ΅)))) |
6 | uneq2 4156 | . . . 4 β’ (π΅ = if(π΅ β β, π΅, β) β (if(π΄ β β, π΄, β) βͺ π΅) = (if(π΄ β β, π΄, β) βͺ if(π΅ β β, π΅, β))) | |
7 | 6 | fveq2d 6892 | . . 3 β’ (π΅ = if(π΅ β β, π΅, β) β (spanβ(if(π΄ β β, π΄, β) βͺ π΅)) = (spanβ(if(π΄ β β, π΄, β) βͺ if(π΅ β β, π΅, β)))) |
8 | fveq2 6888 | . . . 4 β’ (π΅ = if(π΅ β β, π΅, β) β (spanβπ΅) = (spanβif(π΅ β β, π΅, β))) | |
9 | 8 | oveq2d 7421 | . . 3 β’ (π΅ = if(π΅ β β, π΅, β) β ((spanβif(π΄ β β, π΄, β)) +β (spanβπ΅)) = ((spanβif(π΄ β β, π΄, β)) +β (spanβif(π΅ β β, π΅, β)))) |
10 | 7, 9 | eqeq12d 2748 | . 2 β’ (π΅ = if(π΅ β β, π΅, β) β ((spanβ(if(π΄ β β, π΄, β) βͺ π΅)) = ((spanβif(π΄ β β, π΄, β)) +β (spanβπ΅)) β (spanβ(if(π΄ β β, π΄, β) βͺ if(π΅ β β, π΅, β))) = ((spanβif(π΄ β β, π΄, β)) +β (spanβif(π΅ β β, π΅, β))))) |
11 | sseq1 4006 | . . . 4 β’ (π΄ = if(π΄ β β, π΄, β) β (π΄ β β β if(π΄ β β, π΄, β) β β)) | |
12 | sseq1 4006 | . . . 4 β’ ( β = if(π΄ β β, π΄, β) β ( β β β β if(π΄ β β, π΄, β) β β)) | |
13 | ssid 4003 | . . . 4 β’ β β β | |
14 | 11, 12, 13 | elimhyp 4592 | . . 3 β’ if(π΄ β β, π΄, β) β β |
15 | sseq1 4006 | . . . 4 β’ (π΅ = if(π΅ β β, π΅, β) β (π΅ β β β if(π΅ β β, π΅, β) β β)) | |
16 | sseq1 4006 | . . . 4 β’ ( β = if(π΅ β β, π΅, β) β ( β β β β if(π΅ β β, π΅, β) β β)) | |
17 | 15, 16, 13 | elimhyp 4592 | . . 3 β’ if(π΅ β β, π΅, β) β β |
18 | 14, 17 | spanuni 30784 | . 2 β’ (spanβ(if(π΄ β β, π΄, β) βͺ if(π΅ β β, π΅, β))) = ((spanβif(π΄ β β, π΄, β)) +β (spanβif(π΅ β β, π΅, β))) |
19 | 5, 10, 18 | dedth2h 4586 | 1 β’ ((π΄ β β β§ π΅ β β) β (spanβ(π΄ βͺ π΅)) = ((spanβπ΄) +β (spanβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 βͺ cun 3945 β wss 3947 ifcif 4527 βcfv 6540 (class class class)co 7405 βchba 30159 +β cph 30171 spancspn 30172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 ax-hilex 30239 ax-hfvadd 30240 ax-hvcom 30241 ax-hvass 30242 ax-hv0cl 30243 ax-hvaddid 30244 ax-hfvmul 30245 ax-hvmulid 30246 ax-hvmulass 30247 ax-hvdistr1 30248 ax-hvdistr2 30249 ax-hvmul0 30250 ax-hfi 30319 ax-his1 30322 ax-his2 30323 ax-his3 30324 ax-his4 30325 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-icc 13327 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-topgen 17385 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-top 22387 df-topon 22404 df-bases 22440 df-lm 22724 df-haus 22810 df-grpo 29733 df-gid 29734 df-ginv 29735 df-gdiv 29736 df-ablo 29785 df-vc 29799 df-nv 29832 df-va 29835 df-ba 29836 df-sm 29837 df-0v 29838 df-vs 29839 df-nmcv 29840 df-ims 29841 df-hnorm 30208 df-hvsub 30211 df-hlim 30212 df-sh 30447 df-ch 30461 df-ch0 30493 df-shs 30548 df-span 30549 |
This theorem is referenced by: spanpr 30820 superpos 31594 |
Copyright terms: Public domain | W3C validator |