![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shintcl | Structured version Visualization version GIF version |
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shintcl | ⊢ ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4956 | . . 3 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → ∩ 𝐴 = ∩ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ )) | |
2 | 1 | eleq1d 2814 | . 2 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → (∩ 𝐴 ∈ Sℋ ↔ ∩ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ∈ Sℋ )) |
3 | sseq1 4007 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → (𝐴 ⊆ Sℋ ↔ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ )) | |
4 | neeq1 3000 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → (𝐴 ≠ ∅ ↔ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) ↔ (if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ ∧ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅))) |
6 | sseq1 4007 | . . . . 5 ⊢ ( Sℋ = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → ( Sℋ ⊆ Sℋ ↔ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ )) | |
7 | neeq1 3000 | . . . . 5 ⊢ ( Sℋ = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → ( Sℋ ≠ ∅ ↔ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅)) | |
8 | 6, 7 | anbi12d 630 | . . . 4 ⊢ ( Sℋ = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → (( Sℋ ⊆ Sℋ ∧ Sℋ ≠ ∅) ↔ (if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ ∧ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅))) |
9 | ssid 4004 | . . . . 5 ⊢ Sℋ ⊆ Sℋ | |
10 | h0elsh 31086 | . . . . . 6 ⊢ 0ℋ ∈ Sℋ | |
11 | 10 | ne0ii 4341 | . . . . 5 ⊢ Sℋ ≠ ∅ |
12 | 9, 11 | pm3.2i 469 | . . . 4 ⊢ ( Sℋ ⊆ Sℋ ∧ Sℋ ≠ ∅) |
13 | 5, 8, 12 | elimhyp 4597 | . . 3 ⊢ (if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ ∧ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅) |
14 | 13 | shintcli 31159 | . 2 ⊢ ∩ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ∈ Sℋ |
15 | 2, 14 | dedth 4590 | 1 ⊢ ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ⊆ wss 3949 ∅c0 4326 ifcif 4532 ∩ cint 4953 Sℋ csh 30758 0ℋc0h 30765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 ax-mulf 11226 ax-hilex 30829 ax-hfvadd 30830 ax-hvcom 30831 ax-hvass 30832 ax-hv0cl 30833 ax-hvaddid 30834 ax-hfvmul 30835 ax-hvmulid 30836 ax-hvmulass 30837 ax-hvdistr1 30838 ax-hvdistr2 30839 ax-hvmul0 30840 ax-hfi 30909 ax-his1 30912 ax-his2 30913 ax-his3 30914 ax-his4 30915 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-map 8853 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-n0 12511 df-z 12597 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-icc 13371 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-topgen 17432 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-top 22816 df-topon 22833 df-bases 22869 df-lm 23153 df-haus 23239 df-grpo 30323 df-gid 30324 df-ginv 30325 df-gdiv 30326 df-ablo 30375 df-vc 30389 df-nv 30422 df-va 30425 df-ba 30426 df-sm 30427 df-0v 30428 df-vs 30429 df-nmcv 30430 df-ims 30431 df-hnorm 30798 df-hvsub 30801 df-hlim 30802 df-sh 31037 df-ch 31051 df-ch0 31083 |
This theorem is referenced by: spancl 31166 shsval2i 31217 |
Copyright terms: Public domain | W3C validator |