Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shintcl | Structured version Visualization version GIF version |
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shintcl | ⊢ ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4889 | . . 3 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → ∩ 𝐴 = ∩ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ )) | |
2 | 1 | eleq1d 2821 | . 2 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → (∩ 𝐴 ∈ Sℋ ↔ ∩ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ∈ Sℋ )) |
3 | sseq1 3951 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → (𝐴 ⊆ Sℋ ↔ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ )) | |
4 | neeq1 3004 | . . . . 5 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → (𝐴 ≠ ∅ ↔ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅)) | |
5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝐴 = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) ↔ (if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ ∧ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅))) |
6 | sseq1 3951 | . . . . 5 ⊢ ( Sℋ = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → ( Sℋ ⊆ Sℋ ↔ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ )) | |
7 | neeq1 3004 | . . . . 5 ⊢ ( Sℋ = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → ( Sℋ ≠ ∅ ↔ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅)) | |
8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ ( Sℋ = if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) → (( Sℋ ⊆ Sℋ ∧ Sℋ ≠ ∅) ↔ (if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ ∧ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅))) |
9 | ssid 3948 | . . . . 5 ⊢ Sℋ ⊆ Sℋ | |
10 | h0elsh 29667 | . . . . . 6 ⊢ 0ℋ ∈ Sℋ | |
11 | 10 | ne0ii 4277 | . . . . 5 ⊢ Sℋ ≠ ∅ |
12 | 9, 11 | pm3.2i 472 | . . . 4 ⊢ ( Sℋ ⊆ Sℋ ∧ Sℋ ≠ ∅) |
13 | 5, 8, 12 | elimhyp 4530 | . . 3 ⊢ (if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ⊆ Sℋ ∧ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ≠ ∅) |
14 | 13 | shintcli 29740 | . 2 ⊢ ∩ if((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅), 𝐴, Sℋ ) ∈ Sℋ |
15 | 2, 14 | dedth 4523 | 1 ⊢ ((𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ⊆ wss 3892 ∅c0 4262 ifcif 4465 ∩ cint 4886 Sℋ csh 29339 0ℋc0h 29346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 ax-mulf 11001 ax-hilex 29410 ax-hfvadd 29411 ax-hvcom 29412 ax-hvass 29413 ax-hv0cl 29414 ax-hvaddid 29415 ax-hfvmul 29416 ax-hvmulid 29417 ax-hvmulass 29418 ax-hvdistr1 29419 ax-hvdistr2 29420 ax-hvmul0 29421 ax-hfi 29490 ax-his1 29493 ax-his2 29494 ax-his3 29495 ax-his4 29496 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-inf 9250 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-n0 12284 df-z 12370 df-uz 12633 df-q 12739 df-rp 12781 df-xneg 12898 df-xadd 12899 df-xmul 12900 df-icc 13136 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-topgen 17203 df-psmet 20638 df-xmet 20639 df-met 20640 df-bl 20641 df-mopn 20642 df-top 22092 df-topon 22109 df-bases 22145 df-lm 22429 df-haus 22515 df-grpo 28904 df-gid 28905 df-ginv 28906 df-gdiv 28907 df-ablo 28956 df-vc 28970 df-nv 29003 df-va 29006 df-ba 29007 df-sm 29008 df-0v 29009 df-vs 29010 df-nmcv 29011 df-ims 29012 df-hnorm 29379 df-hvsub 29382 df-hlim 29383 df-sh 29618 df-ch 29632 df-ch0 29664 |
This theorem is referenced by: spancl 29747 shsval2i 29798 |
Copyright terms: Public domain | W3C validator |