HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shintcl Structured version   Visualization version   GIF version

Theorem shintcl 31266
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shintcl ((𝐴S𝐴 ≠ ∅) → 𝐴S )

Proof of Theorem shintcl
StepHypRef Expression
1 inteq 4959 . . 3 (𝐴 = if((𝐴S𝐴 ≠ ∅), 𝐴, S ) → 𝐴 = if((𝐴S𝐴 ≠ ∅), 𝐴, S ))
21eleq1d 2811 . 2 (𝐴 = if((𝐴S𝐴 ≠ ∅), 𝐴, S ) → ( 𝐴S if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ∈ S ))
3 sseq1 4005 . . . . 5 (𝐴 = if((𝐴S𝐴 ≠ ∅), 𝐴, S ) → (𝐴S ↔ if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ⊆ S ))
4 neeq1 2993 . . . . 5 (𝐴 = if((𝐴S𝐴 ≠ ∅), 𝐴, S ) → (𝐴 ≠ ∅ ↔ if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ≠ ∅))
53, 4anbi12d 630 . . . 4 (𝐴 = if((𝐴S𝐴 ≠ ∅), 𝐴, S ) → ((𝐴S𝐴 ≠ ∅) ↔ (if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ⊆ S ∧ if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ≠ ∅)))
6 sseq1 4005 . . . . 5 ( S = if((𝐴S𝐴 ≠ ∅), 𝐴, S ) → ( SS ↔ if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ⊆ S ))
7 neeq1 2993 . . . . 5 ( S = if((𝐴S𝐴 ≠ ∅), 𝐴, S ) → ( S ≠ ∅ ↔ if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ≠ ∅))
86, 7anbi12d 630 . . . 4 ( S = if((𝐴S𝐴 ≠ ∅), 𝐴, S ) → (( SSS ≠ ∅) ↔ (if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ⊆ S ∧ if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ≠ ∅)))
9 ssid 4002 . . . . 5 SS
10 h0elsh 31192 . . . . . 6 0S
1110ne0ii 4340 . . . . 5 S ≠ ∅
129, 11pm3.2i 469 . . . 4 ( SSS ≠ ∅)
135, 8, 12elimhyp 4598 . . 3 (if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ⊆ S ∧ if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ≠ ∅)
1413shintcli 31265 . 2 if((𝐴S𝐴 ≠ ∅), 𝐴, S ) ∈ S
152, 14dedth 4591 1 ((𝐴S𝐴 ≠ ∅) → 𝐴S )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wss 3947  c0 4325  ifcif 4533   cint 4956   S csh 30864  0c0h 30871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238  ax-addf 11239  ax-mulf 11240  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-map 8859  df-pm 8860  df-en 8977  df-dom 8978  df-sdom 8979  df-sup 9487  df-inf 9488  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12613  df-uz 12877  df-q 12987  df-rp 13031  df-xneg 13148  df-xadd 13149  df-xmul 13150  df-icc 13387  df-seq 14024  df-exp 14084  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-topgen 17460  df-psmet 21337  df-xmet 21338  df-met 21339  df-bl 21340  df-mopn 21341  df-top 22890  df-topon 22907  df-bases 22943  df-lm 23227  df-haus 23313  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-hnorm 30904  df-hvsub 30907  df-hlim 30908  df-sh 31143  df-ch 31157  df-ch0 31189
This theorem is referenced by:  spancl  31272  shsval2i  31323
  Copyright terms: Public domain W3C validator