MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4dom Structured version   Visualization version   GIF version

Theorem axcc4dom 10510
Description: Relax the constraint on axcc4 10508 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.)
Hypotheses
Ref Expression
axcc4dom.1 𝐴 ∈ V
axcc4dom.2 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
Assertion
Ref Expression
axcc4dom ((𝑁 ≼ ω ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜑,𝑓   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝜓(𝑓,𝑛)   𝑁(𝑥)

Proof of Theorem axcc4dom
StepHypRef Expression
1 brdom2 9042 . . 3 (𝑁 ≼ ω ↔ (𝑁 ≺ ω ∨ 𝑁 ≈ ω))
2 isfinite 9721 . . . . 5 (𝑁 ∈ Fin ↔ 𝑁 ≺ ω)
3 axcc4dom.2 . . . . . . 7 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
43ac6sfi 9348 . . . . . 6 ((𝑁 ∈ Fin ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
54ex 412 . . . . 5 (𝑁 ∈ Fin → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
62, 5sylbir 235 . . . 4 (𝑁 ≺ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
7 raleq 3331 . . . . . 6 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛𝑁𝑥𝐴 𝜑 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑))
8 feq2 6729 . . . . . . . 8 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑓:𝑁𝐴𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴))
9 raleq 3331 . . . . . . . 8 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛𝑁 𝜓 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))
108, 9anbi12d 631 . . . . . . 7 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓) ↔ (𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))
1110exbidv 1920 . . . . . 6 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓) ↔ ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))
127, 11imbi12d 344 . . . . 5 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)) ↔ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))))
13 axcc4dom.1 . . . . . 6 𝐴 ∈ V
14 breq1 5169 . . . . . . 7 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑁 ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω))
15 breq1 5169 . . . . . . 7 (ω = if(𝑁 ≈ ω, 𝑁, ω) → (ω ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω))
16 omex 9712 . . . . . . . 8 ω ∈ V
1716enref 9045 . . . . . . 7 ω ≈ ω
1814, 15, 17elimhyp 4613 . . . . . 6 if(𝑁 ≈ ω, 𝑁, ω) ≈ ω
1913, 18, 3axcc4 10508 . . . . 5 (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))
2012, 19dedth 4606 . . . 4 (𝑁 ≈ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
216, 20jaoi 856 . . 3 ((𝑁 ≺ ω ∨ 𝑁 ≈ ω) → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
221, 21sylbi 217 . 2 (𝑁 ≼ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
2322imp 406 1 ((𝑁 ≼ ω ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  ifcif 4548   class class class wbr 5166  wf 6569  cfv 6573  ωcom 7903  cen 9000  cdom 9001  csdm 9002  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  2ndcctbss  23484  2ndcsep  23488  iscmet3  25346  heiborlem3  37773
  Copyright terms: Public domain W3C validator