![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axcc4dom | Structured version Visualization version GIF version |
Description: Relax the constraint on axcc4 10421 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.) |
Ref | Expression |
---|---|
axcc4dom.1 | ⊢ 𝐴 ∈ V |
axcc4dom.2 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
axcc4dom | ⊢ ((𝑁 ≼ ω ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdom2 8966 | . . 3 ⊢ (𝑁 ≼ ω ↔ (𝑁 ≺ ω ∨ 𝑁 ≈ ω)) | |
2 | isfinite 9634 | . . . . 5 ⊢ (𝑁 ∈ Fin ↔ 𝑁 ≺ ω) | |
3 | axcc4dom.2 | . . . . . . 7 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) | |
4 | 3 | ac6sfi 9275 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
5 | 4 | ex 414 | . . . . 5 ⊢ (𝑁 ∈ Fin → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
6 | 2, 5 | sylbir 234 | . . . 4 ⊢ (𝑁 ≺ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
7 | raleq 3323 | . . . . . 6 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑)) | |
8 | feq2 6689 | . . . . . . . 8 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑓:𝑁⟶𝐴 ↔ 𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴)) | |
9 | raleq 3323 | . . . . . . . 8 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛 ∈ 𝑁 𝜓 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)) | |
10 | 8, 9 | anbi12d 632 | . . . . . . 7 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓) ↔ (𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))) |
11 | 10 | exbidv 1925 | . . . . . 6 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓) ↔ ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))) |
12 | 7, 11 | imbi12d 345 | . . . . 5 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) ↔ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))) |
13 | axcc4dom.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
14 | breq1 5147 | . . . . . . 7 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑁 ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω)) | |
15 | breq1 5147 | . . . . . . 7 ⊢ (ω = if(𝑁 ≈ ω, 𝑁, ω) → (ω ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω)) | |
16 | omex 9625 | . . . . . . . 8 ⊢ ω ∈ V | |
17 | 16 | enref 8969 | . . . . . . 7 ⊢ ω ≈ ω |
18 | 14, 15, 17 | elimhyp 4589 | . . . . . 6 ⊢ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω |
19 | 13, 18, 3 | axcc4 10421 | . . . . 5 ⊢ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)) |
20 | 12, 19 | dedth 4582 | . . . 4 ⊢ (𝑁 ≈ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
21 | 6, 20 | jaoi 856 | . . 3 ⊢ ((𝑁 ≺ ω ∨ 𝑁 ≈ ω) → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
22 | 1, 21 | sylbi 216 | . 2 ⊢ (𝑁 ≼ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
23 | 22 | imp 408 | 1 ⊢ ((𝑁 ≼ ω ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ifcif 4524 class class class wbr 5144 ⟶wf 6531 ‘cfv 6535 ωcom 7842 ≈ cen 8924 ≼ cdom 8925 ≺ csdm 8926 Fincfn 8927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-inf2 9623 ax-cc 10417 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-ov 7399 df-om 7843 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 |
This theorem is referenced by: 2ndcctbss 22928 2ndcsep 22932 iscmet3 24779 heiborlem3 36587 |
Copyright terms: Public domain | W3C validator |