MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4dom Structured version   Visualization version   GIF version

Theorem axcc4dom 10423
Description: Relax the constraint on axcc4 10421 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.)
Hypotheses
Ref Expression
axcc4dom.1 𝐴 ∈ V
axcc4dom.2 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
Assertion
Ref Expression
axcc4dom ((𝑁 ≼ ω ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜑,𝑓   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝜓(𝑓,𝑛)   𝑁(𝑥)

Proof of Theorem axcc4dom
StepHypRef Expression
1 brdom2 8966 . . 3 (𝑁 ≼ ω ↔ (𝑁 ≺ ω ∨ 𝑁 ≈ ω))
2 isfinite 9634 . . . . 5 (𝑁 ∈ Fin ↔ 𝑁 ≺ ω)
3 axcc4dom.2 . . . . . . 7 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
43ac6sfi 9275 . . . . . 6 ((𝑁 ∈ Fin ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
54ex 414 . . . . 5 (𝑁 ∈ Fin → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
62, 5sylbir 234 . . . 4 (𝑁 ≺ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
7 raleq 3323 . . . . . 6 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛𝑁𝑥𝐴 𝜑 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑))
8 feq2 6689 . . . . . . . 8 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑓:𝑁𝐴𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴))
9 raleq 3323 . . . . . . . 8 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛𝑁 𝜓 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))
108, 9anbi12d 632 . . . . . . 7 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓) ↔ (𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))
1110exbidv 1925 . . . . . 6 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓) ↔ ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))
127, 11imbi12d 345 . . . . 5 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)) ↔ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))))
13 axcc4dom.1 . . . . . 6 𝐴 ∈ V
14 breq1 5147 . . . . . . 7 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑁 ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω))
15 breq1 5147 . . . . . . 7 (ω = if(𝑁 ≈ ω, 𝑁, ω) → (ω ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω))
16 omex 9625 . . . . . . . 8 ω ∈ V
1716enref 8969 . . . . . . 7 ω ≈ ω
1814, 15, 17elimhyp 4589 . . . . . 6 if(𝑁 ≈ ω, 𝑁, ω) ≈ ω
1913, 18, 3axcc4 10421 . . . . 5 (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))
2012, 19dedth 4582 . . . 4 (𝑁 ≈ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
216, 20jaoi 856 . . 3 ((𝑁 ≺ ω ∨ 𝑁 ≈ ω) → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
221, 21sylbi 216 . 2 (𝑁 ≼ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
2322imp 408 1 ((𝑁 ≼ ω ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wex 1782  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  ifcif 4524   class class class wbr 5144  wf 6531  cfv 6535  ωcom 7842  cen 8924  cdom 8925  csdm 8926  Fincfn 8927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cc 10417
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-ov 7399  df-om 7843  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931
This theorem is referenced by:  2ndcctbss  22928  2ndcsep  22932  iscmet3  24779  heiborlem3  36587
  Copyright terms: Public domain W3C validator