MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4dom Structured version   Visualization version   GIF version

Theorem axcc4dom 9465
Description: Relax the constraint on axcc4 9463 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.)
Hypotheses
Ref Expression
axcc4dom.1 𝐴 ∈ V
axcc4dom.2 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
Assertion
Ref Expression
axcc4dom ((𝑁 ≼ ω ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜑,𝑓   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝜓(𝑓,𝑛)   𝑁(𝑥)

Proof of Theorem axcc4dom
StepHypRef Expression
1 brdom2 8139 . . 3 (𝑁 ≼ ω ↔ (𝑁 ≺ ω ∨ 𝑁 ≈ ω))
2 isfinite 8713 . . . . 5 (𝑁 ∈ Fin ↔ 𝑁 ≺ ω)
3 axcc4dom.2 . . . . . . 7 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
43ac6sfi 8360 . . . . . 6 ((𝑁 ∈ Fin ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
54ex 397 . . . . 5 (𝑁 ∈ Fin → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
62, 5sylbir 225 . . . 4 (𝑁 ≺ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
7 raleq 3287 . . . . . 6 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛𝑁𝑥𝐴 𝜑 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑))
8 feq2 6167 . . . . . . . 8 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑓:𝑁𝐴𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴))
9 raleq 3287 . . . . . . . 8 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛𝑁 𝜓 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))
108, 9anbi12d 616 . . . . . . 7 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓) ↔ (𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))
1110exbidv 2002 . . . . . 6 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓) ↔ ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))
127, 11imbi12d 333 . . . . 5 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)) ↔ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))))
13 axcc4dom.1 . . . . . 6 𝐴 ∈ V
14 breq1 4789 . . . . . . 7 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑁 ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω))
15 breq1 4789 . . . . . . 7 (ω = if(𝑁 ≈ ω, 𝑁, ω) → (ω ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω))
16 omex 8704 . . . . . . . 8 ω ∈ V
1716enref 8142 . . . . . . 7 ω ≈ ω
1814, 15, 17elimhyp 4285 . . . . . 6 if(𝑁 ≈ ω, 𝑁, ω) ≈ ω
1913, 18, 3axcc4 9463 . . . . 5 (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))
2012, 19dedth 4278 . . . 4 (𝑁 ≈ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
216, 20jaoi 846 . . 3 ((𝑁 ≺ ω ∨ 𝑁 ≈ ω) → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
221, 21sylbi 207 . 2 (𝑁 ≼ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
2322imp 393 1 ((𝑁 ≼ ω ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wex 1852  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  ifcif 4225   class class class wbr 4786  wf 6027  cfv 6031  ωcom 7212  cen 8106  cdom 8107  csdm 8108  Fincfn 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113
This theorem is referenced by:  2ndcctbss  21479  2ndcsep  21483  iscmet3  23310  heiborlem3  33944
  Copyright terms: Public domain W3C validator