![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axcc4dom | Structured version Visualization version GIF version |
Description: Relax the constraint on axcc4 9651 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.) |
Ref | Expression |
---|---|
axcc4dom.1 | ⊢ 𝐴 ∈ V |
axcc4dom.2 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
axcc4dom | ⊢ ((𝑁 ≼ ω ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdom2 8328 | . . 3 ⊢ (𝑁 ≼ ω ↔ (𝑁 ≺ ω ∨ 𝑁 ≈ ω)) | |
2 | isfinite 8901 | . . . . 5 ⊢ (𝑁 ∈ Fin ↔ 𝑁 ≺ ω) | |
3 | axcc4dom.2 | . . . . . . 7 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) | |
4 | 3 | ac6sfi 8549 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
5 | 4 | ex 405 | . . . . 5 ⊢ (𝑁 ∈ Fin → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
6 | 2, 5 | sylbir 227 | . . . 4 ⊢ (𝑁 ≺ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
7 | raleq 3339 | . . . . . 6 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑)) | |
8 | feq2 6320 | . . . . . . . 8 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑓:𝑁⟶𝐴 ↔ 𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴)) | |
9 | raleq 3339 | . . . . . . . 8 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛 ∈ 𝑁 𝜓 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)) | |
10 | 8, 9 | anbi12d 621 | . . . . . . 7 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓) ↔ (𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))) |
11 | 10 | exbidv 1880 | . . . . . 6 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓) ↔ ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))) |
12 | 7, 11 | imbi12d 337 | . . . . 5 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) ↔ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))) |
13 | axcc4dom.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
14 | breq1 4926 | . . . . . . 7 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑁 ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω)) | |
15 | breq1 4926 | . . . . . . 7 ⊢ (ω = if(𝑁 ≈ ω, 𝑁, ω) → (ω ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω)) | |
16 | omex 8892 | . . . . . . . 8 ⊢ ω ∈ V | |
17 | 16 | enref 8331 | . . . . . . 7 ⊢ ω ≈ ω |
18 | 14, 15, 17 | elimhyp 4407 | . . . . . 6 ⊢ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω |
19 | 13, 18, 3 | axcc4 9651 | . . . . 5 ⊢ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)) |
20 | 12, 19 | dedth 4400 | . . . 4 ⊢ (𝑁 ≈ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
21 | 6, 20 | jaoi 843 | . . 3 ⊢ ((𝑁 ≺ ω ∨ 𝑁 ≈ ω) → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
22 | 1, 21 | sylbi 209 | . 2 ⊢ (𝑁 ≼ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
23 | 22 | imp 398 | 1 ⊢ ((𝑁 ≼ ω ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 = wceq 1507 ∃wex 1742 ∈ wcel 2048 ∀wral 3082 ∃wrex 3083 Vcvv 3409 ifcif 4344 class class class wbr 4923 ⟶wf 6178 ‘cfv 6182 ωcom 7390 ≈ cen 8295 ≼ cdom 8296 ≺ csdm 8297 Fincfn 8298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 ax-cc 9647 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-om 7391 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 |
This theorem is referenced by: 2ndcctbss 21757 2ndcsep 21761 iscmet3 23589 heiborlem3 34481 |
Copyright terms: Public domain | W3C validator |