| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axcc4dom | Structured version Visualization version GIF version | ||
| Description: Relax the constraint on axcc4 10479 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.) |
| Ref | Expression |
|---|---|
| axcc4dom.1 | ⊢ 𝐴 ∈ V |
| axcc4dom.2 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| axcc4dom | ⊢ ((𝑁 ≼ ω ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 9022 | . . 3 ⊢ (𝑁 ≼ ω ↔ (𝑁 ≺ ω ∨ 𝑁 ≈ ω)) | |
| 2 | isfinite 9692 | . . . . 5 ⊢ (𝑁 ∈ Fin ↔ 𝑁 ≺ ω) | |
| 3 | axcc4dom.2 | . . . . . . 7 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | ac6sfi 9320 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝑁 ∈ Fin → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 6 | 2, 5 | sylbir 235 | . . . 4 ⊢ (𝑁 ≺ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 7 | raleq 3323 | . . . . . 6 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑)) | |
| 8 | feq2 6717 | . . . . . . . 8 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑓:𝑁⟶𝐴 ↔ 𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴)) | |
| 9 | raleq 3323 | . . . . . . . 8 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛 ∈ 𝑁 𝜓 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)) | |
| 10 | 8, 9 | anbi12d 632 | . . . . . . 7 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓) ↔ (𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))) |
| 11 | 10 | exbidv 1921 | . . . . . 6 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓) ↔ ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))) |
| 12 | 7, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) ↔ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))) |
| 13 | axcc4dom.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 14 | breq1 5146 | . . . . . . 7 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑁 ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω)) | |
| 15 | breq1 5146 | . . . . . . 7 ⊢ (ω = if(𝑁 ≈ ω, 𝑁, ω) → (ω ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω)) | |
| 16 | omex 9683 | . . . . . . . 8 ⊢ ω ∈ V | |
| 17 | 16 | enref 9025 | . . . . . . 7 ⊢ ω ≈ ω |
| 18 | 14, 15, 17 | elimhyp 4591 | . . . . . 6 ⊢ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω |
| 19 | 13, 18, 3 | axcc4 10479 | . . . . 5 ⊢ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)) |
| 20 | 12, 19 | dedth 4584 | . . . 4 ⊢ (𝑁 ≈ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 21 | 6, 20 | jaoi 858 | . . 3 ⊢ ((𝑁 ≺ ω ∨ 𝑁 ≈ ω) → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 22 | 1, 21 | sylbi 217 | . 2 ⊢ (𝑁 ≼ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 23 | 22 | imp 406 | 1 ⊢ ((𝑁 ≼ ω ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ifcif 4525 class class class wbr 5143 ⟶wf 6557 ‘cfv 6561 ωcom 7887 ≈ cen 8982 ≼ cdom 8983 ≺ csdm 8984 Fincfn 8985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cc 10475 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 |
| This theorem is referenced by: 2ndcctbss 23463 2ndcsep 23467 iscmet3 25327 heiborlem3 37820 |
| Copyright terms: Public domain | W3C validator |