| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axcc4dom | Structured version Visualization version GIF version | ||
| Description: Relax the constraint on axcc4 10399 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.) |
| Ref | Expression |
|---|---|
| axcc4dom.1 | ⊢ 𝐴 ∈ V |
| axcc4dom.2 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| axcc4dom | ⊢ ((𝑁 ≼ ω ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 8956 | . . 3 ⊢ (𝑁 ≼ ω ↔ (𝑁 ≺ ω ∨ 𝑁 ≈ ω)) | |
| 2 | isfinite 9612 | . . . . 5 ⊢ (𝑁 ∈ Fin ↔ 𝑁 ≺ ω) | |
| 3 | axcc4dom.2 | . . . . . . 7 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | ac6sfi 9238 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝑁 ∈ Fin → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 6 | 2, 5 | sylbir 235 | . . . 4 ⊢ (𝑁 ≺ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 7 | raleq 3298 | . . . . . 6 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑)) | |
| 8 | feq2 6670 | . . . . . . . 8 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑓:𝑁⟶𝐴 ↔ 𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴)) | |
| 9 | raleq 3298 | . . . . . . . 8 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛 ∈ 𝑁 𝜓 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)) | |
| 10 | 8, 9 | anbi12d 632 | . . . . . . 7 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓) ↔ (𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))) |
| 11 | 10 | exbidv 1921 | . . . . . 6 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓) ↔ ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))) |
| 12 | 7, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) ↔ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))) |
| 13 | axcc4dom.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 14 | breq1 5113 | . . . . . . 7 ⊢ (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑁 ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω)) | |
| 15 | breq1 5113 | . . . . . . 7 ⊢ (ω = if(𝑁 ≈ ω, 𝑁, ω) → (ω ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω)) | |
| 16 | omex 9603 | . . . . . . . 8 ⊢ ω ∈ V | |
| 17 | 16 | enref 8959 | . . . . . . 7 ⊢ ω ≈ ω |
| 18 | 14, 15, 17 | elimhyp 4557 | . . . . . 6 ⊢ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω |
| 19 | 13, 18, 3 | axcc4 10399 | . . . . 5 ⊢ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)) |
| 20 | 12, 19 | dedth 4550 | . . . 4 ⊢ (𝑁 ≈ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 21 | 6, 20 | jaoi 857 | . . 3 ⊢ ((𝑁 ≺ ω ∨ 𝑁 ≈ ω) → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 22 | 1, 21 | sylbi 217 | . 2 ⊢ (𝑁 ≼ ω → (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
| 23 | 22 | imp 406 | 1 ⊢ ((𝑁 ≼ ω ∧ ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ifcif 4491 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 ωcom 7845 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 |
| This theorem is referenced by: 2ndcctbss 23349 2ndcsep 23353 iscmet3 25200 heiborlem3 37814 |
| Copyright terms: Public domain | W3C validator |