MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimge0 Structured version   Visualization version   GIF version

Theorem elimge0 12050
Description: Hypothesis for weak deduction theorem to eliminate 0 ≤ 𝐴. (Contributed by NM, 30-Jul-1999.)
Assertion
Ref Expression
elimge0 0 ≤ if(0 ≤ 𝐴, 𝐴, 0)

Proof of Theorem elimge0
StepHypRef Expression
1 breq2 5142 . 2 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → (0 ≤ 𝐴 ↔ 0 ≤ if(0 ≤ 𝐴, 𝐴, 0)))
2 breq2 5142 . 2 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (0 ≤ 0 ↔ 0 ≤ if(0 ≤ 𝐴, 𝐴, 0)))
3 0re 11213 . . 3 0 ∈ ℝ
43leidi 11745 . 2 0 ≤ 0
51, 2, 4elimhyp 4585 1 0 ≤ if(0 ≤ 𝐴, 𝐴, 0)
Colors of variables: wff setvar class
Syntax hints:  ifcif 4520   class class class wbr 5138  0cc0 11106  cle 11246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11163  ax-1cn 11164  ax-addrcl 11167  ax-rnegex 11177  ax-cnre 11179  ax-pre-lttri 11180
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator