HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophm Structured version   Visualization version   GIF version

Theorem lnophm 30961
Description: A linear operator is Hermitian if 𝑥 ·ih (𝑇𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnophm ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp)
Distinct variable group:   𝑥,𝑇

Proof of Theorem lnophm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2825 . 2 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ HrmOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ HrmOp))
2 eleq1 2825 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
3 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
4 fveq2 6842 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑇𝑥) = (𝑇𝑦))
53, 4oveq12d 7375 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ·ih (𝑇𝑥)) = (𝑦 ·ih (𝑇𝑦)))
65eleq1d 2822 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ))
76cbvralvw 3225 . . . . . . 7 (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ)
8 fveq1 6841 . . . . . . . . . 10 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦))
98oveq2d 7373 . . . . . . . . 9 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑦 ·ih (𝑇𝑦)) = (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)))
109eleq1d 2822 . . . . . . . 8 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑦 ·ih (𝑇𝑦)) ∈ ℝ ↔ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1110ralbidv 3174 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
127, 11bitrid 282 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
132, 12anbi12d 631 . . . . 5 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) ↔ (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)))
14 eleq1 2825 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ) ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
15 fveq1 6841 . . . . . . . . 9 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ)‘𝑦) = (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦))
1615oveq2d 7373 . . . . . . . 8 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) = (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)))
1716eleq1d 2822 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ ↔ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1817ralbidv 3174 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1914, 18anbi12d 631 . . . . 5 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((( I ↾ ℋ) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ) ↔ (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)))
20 idlnop 30934 . . . . . 6 ( I ↾ ℋ) ∈ LinOp
21 fvresi 7119 . . . . . . . . 9 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
2221oveq2d 7373 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) = (𝑦 ·ih 𝑦))
23 hiidrcl 30037 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑦 ·ih 𝑦) ∈ ℝ)
2422, 23eqeltrd 2838 . . . . . . 7 (𝑦 ∈ ℋ → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ)
2524rgen 3066 . . . . . 6 𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ
2620, 25pm3.2i 471 . . . . 5 (( I ↾ ℋ) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ)
2713, 19, 26elimhyp 4551 . . . 4 (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)
2827simpli 484 . . 3 if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp
2927simpri 486 . . 3 𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ
3028, 29lnophmi 30960 . 2 if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ HrmOp
311, 30dedth 4544 1 ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  ifcif 4486   I cid 5530  cres 5635  cfv 6496  (class class class)co 7357  cr 11050  chba 29861   ·ih csp 29864  LinOpclo 29889  HrmOpcho 29892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-3 12217  df-4 12218  df-cj 14984  df-re 14985  df-im 14986  df-hvsub 29913  df-lnop 30783  df-unop 30785  df-hmop 30786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator