HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophm Structured version   Visualization version   GIF version

Theorem lnophm 30282
Description: A linear operator is Hermitian if 𝑥 ·ih (𝑇𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnophm ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp)
Distinct variable group:   𝑥,𝑇

Proof of Theorem lnophm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . 2 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ HrmOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ HrmOp))
2 eleq1 2826 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
3 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
4 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑇𝑥) = (𝑇𝑦))
53, 4oveq12d 7273 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ·ih (𝑇𝑥)) = (𝑦 ·ih (𝑇𝑦)))
65eleq1d 2823 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ))
76cbvralvw 3372 . . . . . . 7 (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ)
8 fveq1 6755 . . . . . . . . . 10 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦))
98oveq2d 7271 . . . . . . . . 9 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑦 ·ih (𝑇𝑦)) = (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)))
109eleq1d 2823 . . . . . . . 8 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑦 ·ih (𝑇𝑦)) ∈ ℝ ↔ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1110ralbidv 3120 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
127, 11syl5bb 282 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
132, 12anbi12d 630 . . . . 5 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) ↔ (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)))
14 eleq1 2826 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ) ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
15 fveq1 6755 . . . . . . . . 9 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ)‘𝑦) = (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦))
1615oveq2d 7271 . . . . . . . 8 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) = (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)))
1716eleq1d 2823 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ ↔ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1817ralbidv 3120 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1914, 18anbi12d 630 . . . . 5 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((( I ↾ ℋ) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ) ↔ (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)))
20 idlnop 30255 . . . . . 6 ( I ↾ ℋ) ∈ LinOp
21 fvresi 7027 . . . . . . . . 9 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
2221oveq2d 7271 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) = (𝑦 ·ih 𝑦))
23 hiidrcl 29358 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑦 ·ih 𝑦) ∈ ℝ)
2422, 23eqeltrd 2839 . . . . . . 7 (𝑦 ∈ ℋ → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ)
2524rgen 3073 . . . . . 6 𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ
2620, 25pm3.2i 470 . . . . 5 (( I ↾ ℋ) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ)
2713, 19, 26elimhyp 4521 . . . 4 (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)
2827simpli 483 . . 3 if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp
2927simpri 485 . . 3 𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ
3028, 29lnophmi 30281 . 2 if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ HrmOp
311, 30dedth 4514 1 ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  ifcif 4456   I cid 5479  cres 5582  cfv 6418  (class class class)co 7255  cr 10801  chba 29182   ·ih csp 29185  LinOpclo 29210  HrmOpcho 29213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-3 11967  df-4 11968  df-cj 14738  df-re 14739  df-im 14740  df-hvsub 29234  df-lnop 30104  df-unop 30106  df-hmop 30107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator