HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophm Structured version   Visualization version   GIF version

Theorem lnophm 30381
Description: A linear operator is Hermitian if 𝑥 ·ih (𝑇𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnophm ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp)
Distinct variable group:   𝑥,𝑇

Proof of Theorem lnophm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . 2 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ HrmOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ HrmOp))
2 eleq1 2826 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
3 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
4 fveq2 6774 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑇𝑥) = (𝑇𝑦))
53, 4oveq12d 7293 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ·ih (𝑇𝑥)) = (𝑦 ·ih (𝑇𝑦)))
65eleq1d 2823 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ))
76cbvralvw 3383 . . . . . . 7 (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ)
8 fveq1 6773 . . . . . . . . . 10 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦))
98oveq2d 7291 . . . . . . . . 9 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑦 ·ih (𝑇𝑦)) = (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)))
109eleq1d 2823 . . . . . . . 8 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑦 ·ih (𝑇𝑦)) ∈ ℝ ↔ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1110ralbidv 3112 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
127, 11syl5bb 283 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
132, 12anbi12d 631 . . . . 5 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) ↔ (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)))
14 eleq1 2826 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ) ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
15 fveq1 6773 . . . . . . . . 9 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ)‘𝑦) = (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦))
1615oveq2d 7291 . . . . . . . 8 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) = (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)))
1716eleq1d 2823 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ ↔ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1817ralbidv 3112 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1914, 18anbi12d 631 . . . . 5 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((( I ↾ ℋ) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ) ↔ (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)))
20 idlnop 30354 . . . . . 6 ( I ↾ ℋ) ∈ LinOp
21 fvresi 7045 . . . . . . . . 9 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
2221oveq2d 7291 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) = (𝑦 ·ih 𝑦))
23 hiidrcl 29457 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑦 ·ih 𝑦) ∈ ℝ)
2422, 23eqeltrd 2839 . . . . . . 7 (𝑦 ∈ ℋ → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ)
2524rgen 3074 . . . . . 6 𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ
2620, 25pm3.2i 471 . . . . 5 (( I ↾ ℋ) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ)
2713, 19, 26elimhyp 4524 . . . 4 (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)
2827simpli 484 . . 3 if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp
2927simpri 486 . . 3 𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ
3028, 29lnophmi 30380 . 2 if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ HrmOp
311, 30dedth 4517 1 ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  ifcif 4459   I cid 5488  cres 5591  cfv 6433  (class class class)co 7275  cr 10870  chba 29281   ·ih csp 29284  LinOpclo 29309  HrmOpcho 29312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-3 12037  df-4 12038  df-cj 14810  df-re 14811  df-im 14812  df-hvsub 29333  df-lnop 30203  df-unop 30205  df-hmop 30206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator