HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdfnlb Structured version   Visualization version   GIF version

Theorem nmbdfnlb 29825
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmbdfnlb ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmbdfnlb
StepHypRef Expression
1 fveq1 6662 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (𝑇𝐴) = (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴))
21fveq2d 6667 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (abs‘(𝑇𝐴)) = (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)))
3 fveq2 6663 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (normfn𝑇) = (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))))
43oveq1d 7164 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn𝑇) · (norm𝐴)) = ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
52, 4breq12d 5072 . . . 4 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)) ↔ (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴))))
65imbi2d 343 . . 3 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))) ↔ (𝐴 ∈ ℋ → (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))))
7 eleq1 2899 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (𝑇 ∈ LinFn ↔ if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn))
83eleq1d 2896 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn𝑇) ∈ ℝ ↔ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ))
97, 8anbi12d 632 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) ↔ (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)))
10 eleq1 2899 . . . . . 6 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (( ℋ × {0}) ∈ LinFn ↔ if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn))
11 fveq2 6663 . . . . . . 7 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (normfn‘( ℋ × {0})) = (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))))
1211eleq1d 2896 . . . . . 6 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn‘( ℋ × {0})) ∈ ℝ ↔ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ))
1310, 12anbi12d 632 . . . . 5 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((( ℋ × {0}) ∈ LinFn ∧ (normfn‘( ℋ × {0})) ∈ ℝ) ↔ (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)))
14 0lnfn 29760 . . . . . 6 ( ℋ × {0}) ∈ LinFn
15 nmfn0 29762 . . . . . . 7 (normfn‘( ℋ × {0})) = 0
16 0re 10636 . . . . . . 7 0 ∈ ℝ
1715, 16eqeltri 2908 . . . . . 6 (normfn‘( ℋ × {0})) ∈ ℝ
1814, 17pm3.2i 473 . . . . 5 (( ℋ × {0}) ∈ LinFn ∧ (normfn‘( ℋ × {0})) ∈ ℝ)
199, 13, 18elimhyp 4523 . . . 4 (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)
2019nmbdfnlbi 29824 . . 3 (𝐴 ∈ ℋ → (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
216, 20dedth 4516 . 2 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) → (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
22213impia 1112 1 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  ifcif 4460  {csn 4560   class class class wbr 5059   × cxp 5546  cfv 6348  (class class class)co 7149  cr 10529  0cc0 10530   · cmul 10535  cle 10669  abscabs 14588  chba 28694  normcno 28698  normfncnmf 28726  LinFnclf 28729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-hilex 28774  ax-hfvadd 28775  ax-hv0cl 28778  ax-hvaddid 28779  ax-hfvmul 28780  ax-hvmulid 28781  ax-hvmul0 28785  ax-hfi 28854  ax-his1 28857  ax-his3 28859  ax-his4 28860
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-sup 8899  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13367  df-exp 13427  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-hnorm 28743  df-nmfn 29620  df-lnfn 29623
This theorem is referenced by:  lnfncnbd  29832
  Copyright terms: Public domain W3C validator