HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdfnlb Structured version   Visualization version   GIF version

Theorem nmbdfnlb 31977
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmbdfnlb ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmbdfnlb
StepHypRef Expression
1 fveq1 6889 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (𝑇𝐴) = (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴))
21fveq2d 6894 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (abs‘(𝑇𝐴)) = (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)))
3 fveq2 6890 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (normfn𝑇) = (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))))
43oveq1d 7428 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn𝑇) · (norm𝐴)) = ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
52, 4breq12d 5156 . . . 4 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)) ↔ (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴))))
65imbi2d 339 . . 3 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))) ↔ (𝐴 ∈ ℋ → (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))))
7 eleq1 2814 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (𝑇 ∈ LinFn ↔ if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn))
83eleq1d 2811 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn𝑇) ∈ ℝ ↔ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ))
97, 8anbi12d 630 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) ↔ (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)))
10 eleq1 2814 . . . . . 6 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (( ℋ × {0}) ∈ LinFn ↔ if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn))
11 fveq2 6890 . . . . . . 7 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (normfn‘( ℋ × {0})) = (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))))
1211eleq1d 2811 . . . . . 6 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn‘( ℋ × {0})) ∈ ℝ ↔ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ))
1310, 12anbi12d 630 . . . . 5 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((( ℋ × {0}) ∈ LinFn ∧ (normfn‘( ℋ × {0})) ∈ ℝ) ↔ (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)))
14 0lnfn 31912 . . . . . 6 ( ℋ × {0}) ∈ LinFn
15 nmfn0 31914 . . . . . . 7 (normfn‘( ℋ × {0})) = 0
16 0re 11254 . . . . . . 7 0 ∈ ℝ
1715, 16eqeltri 2822 . . . . . 6 (normfn‘( ℋ × {0})) ∈ ℝ
1814, 17pm3.2i 469 . . . . 5 (( ℋ × {0}) ∈ LinFn ∧ (normfn‘( ℋ × {0})) ∈ ℝ)
199, 13, 18elimhyp 4588 . . . 4 (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)
2019nmbdfnlbi 31976 . . 3 (𝐴 ∈ ℋ → (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
216, 20dedth 4581 . 2 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) → (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
22213impia 1114 1 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  ifcif 4523  {csn 4623   class class class wbr 5143   × cxp 5670  cfv 6543  (class class class)co 7413  cr 11145  0cc0 11146   · cmul 11151  cle 11287  abscabs 15231  chba 30846  normcno 30850  normfncnmf 30878  LinFnclf 30881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-hilex 30926  ax-hfvadd 30927  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his3 31011  ax-his4 31012
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9475  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-n0 12516  df-z 12602  df-uz 12866  df-rp 13020  df-seq 14013  df-exp 14073  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233  df-hnorm 30895  df-nmfn 31772  df-lnfn 31775
This theorem is referenced by:  lnfncnbd  31984
  Copyright terms: Public domain W3C validator