HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdfnlb Structured version   Visualization version   GIF version

Theorem nmbdfnlb 30313
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmbdfnlb ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmbdfnlb
StepHypRef Expression
1 fveq1 6755 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (𝑇𝐴) = (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴))
21fveq2d 6760 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (abs‘(𝑇𝐴)) = (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)))
3 fveq2 6756 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (normfn𝑇) = (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))))
43oveq1d 7270 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn𝑇) · (norm𝐴)) = ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
52, 4breq12d 5083 . . . 4 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)) ↔ (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴))))
65imbi2d 340 . . 3 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))) ↔ (𝐴 ∈ ℋ → (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))))
7 eleq1 2826 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (𝑇 ∈ LinFn ↔ if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn))
83eleq1d 2823 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn𝑇) ∈ ℝ ↔ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ))
97, 8anbi12d 630 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) ↔ (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)))
10 eleq1 2826 . . . . . 6 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (( ℋ × {0}) ∈ LinFn ↔ if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn))
11 fveq2 6756 . . . . . . 7 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (normfn‘( ℋ × {0})) = (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))))
1211eleq1d 2823 . . . . . 6 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn‘( ℋ × {0})) ∈ ℝ ↔ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ))
1310, 12anbi12d 630 . . . . 5 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((( ℋ × {0}) ∈ LinFn ∧ (normfn‘( ℋ × {0})) ∈ ℝ) ↔ (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)))
14 0lnfn 30248 . . . . . 6 ( ℋ × {0}) ∈ LinFn
15 nmfn0 30250 . . . . . . 7 (normfn‘( ℋ × {0})) = 0
16 0re 10908 . . . . . . 7 0 ∈ ℝ
1715, 16eqeltri 2835 . . . . . 6 (normfn‘( ℋ × {0})) ∈ ℝ
1814, 17pm3.2i 470 . . . . 5 (( ℋ × {0}) ∈ LinFn ∧ (normfn‘( ℋ × {0})) ∈ ℝ)
199, 13, 18elimhyp 4521 . . . 4 (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)
2019nmbdfnlbi 30312 . . 3 (𝐴 ∈ ℋ → (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
216, 20dedth 4514 . 2 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) → (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
22213impia 1115 1 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  ifcif 4456  {csn 4558   class class class wbr 5070   × cxp 5578  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   · cmul 10807  cle 10941  abscabs 14873  chba 29182  normcno 29186  normfncnmf 29214  LinFnclf 29217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-hilex 29262  ax-hfvadd 29263  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-hnorm 29231  df-nmfn 30108  df-lnfn 30111
This theorem is referenced by:  lnfncnbd  30320
  Copyright terms: Public domain W3C validator