HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdfnlb Structured version   Visualization version   GIF version

Theorem nmbdfnlb 32095
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmbdfnlb ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmbdfnlb
StepHypRef Expression
1 fveq1 6913 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (𝑇𝐴) = (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴))
21fveq2d 6918 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (abs‘(𝑇𝐴)) = (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)))
3 fveq2 6914 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (normfn𝑇) = (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))))
43oveq1d 7453 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn𝑇) · (norm𝐴)) = ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
52, 4breq12d 5164 . . . 4 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)) ↔ (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴))))
65imbi2d 340 . . 3 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))) ↔ (𝐴 ∈ ℋ → (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))))
7 eleq1 2829 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (𝑇 ∈ LinFn ↔ if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn))
83eleq1d 2826 . . . . . 6 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn𝑇) ∈ ℝ ↔ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ))
97, 8anbi12d 632 . . . . 5 (𝑇 = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) ↔ (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)))
10 eleq1 2829 . . . . . 6 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (( ℋ × {0}) ∈ LinFn ↔ if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn))
11 fveq2 6914 . . . . . . 7 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → (normfn‘( ℋ × {0})) = (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))))
1211eleq1d 2826 . . . . . 6 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((normfn‘( ℋ × {0})) ∈ ℝ ↔ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ))
1310, 12anbi12d 632 . . . . 5 (( ℋ × {0}) = if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) → ((( ℋ × {0}) ∈ LinFn ∧ (normfn‘( ℋ × {0})) ∈ ℝ) ↔ (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)))
14 0lnfn 32030 . . . . . 6 ( ℋ × {0}) ∈ LinFn
15 nmfn0 32032 . . . . . . 7 (normfn‘( ℋ × {0})) = 0
16 0re 11270 . . . . . . 7 0 ∈ ℝ
1715, 16eqeltri 2837 . . . . . 6 (normfn‘( ℋ × {0})) ∈ ℝ
1814, 17pm3.2i 470 . . . . 5 (( ℋ × {0}) ∈ LinFn ∧ (normfn‘( ℋ × {0})) ∈ ℝ)
199, 13, 18elimhyp 4599 . . . 4 (if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ (normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) ∈ ℝ)
2019nmbdfnlbi 32094 . . 3 (𝐴 ∈ ℋ → (abs‘(if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
216, 20dedth 4592 . 2 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ) → (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
22213impia 1118 1 ((𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  ifcif 4534  {csn 4634   class class class wbr 5151   × cxp 5691  cfv 6569  (class class class)co 7438  cr 11161  0cc0 11162   · cmul 11167  cle 11303  abscabs 15279  chba 30964  normcno 30968  normfncnmf 30996  LinFnclf 30999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240  ax-hilex 31044  ax-hfvadd 31045  ax-hv0cl 31048  ax-hvaddid 31049  ax-hfvmul 31050  ax-hvmulid 31051  ax-hvmul0 31055  ax-hfi 31124  ax-his1 31127  ax-his3 31129  ax-his4 31130
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-sup 9489  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-z 12621  df-uz 12886  df-rp 13042  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-hnorm 31013  df-nmfn 31890  df-lnfn 31893
This theorem is referenced by:  lnfncnbd  32102
  Copyright terms: Public domain W3C validator