HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem7tALT Structured version   Visualization version   GIF version

Theorem normlem7tALT 31106
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
normlem7t.1 𝐴 ∈ ℋ
normlem7t.2 𝐵 ∈ ℋ
Assertion
Ref Expression
normlem7tALT ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))

Proof of Theorem normlem7tALT
StepHypRef Expression
1 fveq2 6828 . . . . 5 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (∗‘𝑆) = (∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
21oveq1d 7367 . . . 4 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((∗‘𝑆) · (𝐴 ·ih 𝐵)) = ((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)))
3 oveq1 7359 . . . 4 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 · (𝐵 ·ih 𝐴)) = (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴)))
42, 3oveq12d 7370 . . 3 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) = (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))))
54breq1d 5103 . 2 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))) ↔ (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))))
6 eleq1 2819 . . . . . 6 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ))
7 fveq2 6828 . . . . . . 7 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘𝑆) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
87eqeq1d 2733 . . . . . 6 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘𝑆) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))
96, 8anbi12d 632 . . . . 5 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)))
10 eleq1 2819 . . . . . 6 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (1 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ))
11 fveq2 6828 . . . . . . 7 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘1) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
1211eqeq1d 2733 . . . . . 6 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘1) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))
1310, 12anbi12d 632 . . . . 5 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((1 ∈ ℂ ∧ (abs‘1) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)))
14 ax-1cn 11070 . . . . . 6 1 ∈ ℂ
15 abs1 15210 . . . . . 6 (abs‘1) = 1
1614, 15pm3.2i 470 . . . . 5 (1 ∈ ℂ ∧ (abs‘1) = 1)
179, 13, 16elimhyp 4540 . . . 4 (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)
1817simpli 483 . . 3 if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ
19 normlem7t.1 . . 3 𝐴 ∈ ℋ
20 normlem7t.2 . . 3 𝐵 ∈ ℋ
2117simpri 485 . . 3 (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1
2218, 19, 20, 21normlem7 31103 . 2 (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))
235, 22dedth 4533 1 ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4474   class class class wbr 5093  cfv 6487  (class class class)co 7352  cc 11010  1c1 11013   + caddc 11015   · cmul 11017  cle 11153  2c2 12186  ccj 15009  csqrt 15146  abscabs 15147  chba 30906   ·ih csp 30909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-hfvadd 30987  ax-hv0cl 30990  ax-hfvmul 30992  ax-hvmulass 30994  ax-hvmul0 30997  ax-hfi 31066  ax-his1 31069  ax-his2 31070  ax-his3 31071  ax-his4 31072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9332  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-n0 12388  df-z 12475  df-uz 12739  df-rp 12897  df-seq 13915  df-exp 13975  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-hvsub 30958
This theorem is referenced by:  bcsiALT  31166
  Copyright terms: Public domain W3C validator