| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normlem7tALT | Structured version Visualization version GIF version | ||
| Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| normlem7t.1 | ⊢ 𝐴 ∈ ℋ |
| normlem7t.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| normlem7tALT | ⊢ ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . . 5 ⊢ (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (∗‘𝑆) = (∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1))) | |
| 2 | 1 | oveq1d 7420 | . . . 4 ⊢ (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((∗‘𝑆) · (𝐴 ·ih 𝐵)) = ((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵))) |
| 3 | oveq1 7412 | . . . 4 ⊢ (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 · (𝐵 ·ih 𝐴)) = (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) | |
| 4 | 2, 3 | oveq12d 7423 | . . 3 ⊢ (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) = (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴)))) |
| 5 | 4 | breq1d 5129 | . 2 ⊢ (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))) ↔ (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))) |
| 6 | eleq1 2822 | . . . . . 6 ⊢ (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ)) | |
| 7 | fveq2 6876 | . . . . . . 7 ⊢ (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘𝑆) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1))) | |
| 8 | 7 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘𝑆) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)) |
| 9 | 6, 8 | anbi12d 632 | . . . . 5 ⊢ (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))) |
| 10 | eleq1 2822 | . . . . . 6 ⊢ (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (1 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ)) | |
| 11 | fveq2 6876 | . . . . . . 7 ⊢ (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘1) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1))) | |
| 12 | 11 | eqeq1d 2737 | . . . . . 6 ⊢ (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘1) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)) |
| 13 | 10, 12 | anbi12d 632 | . . . . 5 ⊢ (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((1 ∈ ℂ ∧ (abs‘1) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))) |
| 14 | ax-1cn 11187 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 15 | abs1 15316 | . . . . . 6 ⊢ (abs‘1) = 1 | |
| 16 | 14, 15 | pm3.2i 470 | . . . . 5 ⊢ (1 ∈ ℂ ∧ (abs‘1) = 1) |
| 17 | 9, 13, 16 | elimhyp 4566 | . . . 4 ⊢ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1) |
| 18 | 17 | simpli 483 | . . 3 ⊢ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ |
| 19 | normlem7t.1 | . . 3 ⊢ 𝐴 ∈ ℋ | |
| 20 | normlem7t.2 | . . 3 ⊢ 𝐵 ∈ ℋ | |
| 21 | 17 | simpri 485 | . . 3 ⊢ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1 |
| 22 | 18, 19, 20, 21 | normlem7 31097 | . 2 ⊢ (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))) |
| 23 | 5, 22 | dedth 4559 | 1 ⊢ ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4500 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 · cmul 11134 ≤ cle 11270 2c2 12295 ∗ccj 15115 √csqrt 15252 abscabs 15253 ℋchba 30900 ·ih csp 30903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-hfvadd 30981 ax-hv0cl 30984 ax-hfvmul 30986 ax-hvmulass 30988 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-hvsub 30952 |
| This theorem is referenced by: bcsiALT 31160 |
| Copyright terms: Public domain | W3C validator |