HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem7tALT Structured version   Visualization version   GIF version

Theorem normlem7tALT 28898
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
normlem7t.1 𝐴 ∈ ℋ
normlem7t.2 𝐵 ∈ ℋ
Assertion
Ref Expression
normlem7tALT ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))

Proof of Theorem normlem7tALT
StepHypRef Expression
1 fveq2 6672 . . . . 5 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (∗‘𝑆) = (∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
21oveq1d 7173 . . . 4 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((∗‘𝑆) · (𝐴 ·ih 𝐵)) = ((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)))
3 oveq1 7165 . . . 4 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 · (𝐵 ·ih 𝐴)) = (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴)))
42, 3oveq12d 7176 . . 3 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) = (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))))
54breq1d 5078 . 2 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))) ↔ (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))))
6 eleq1 2902 . . . . . 6 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ))
7 fveq2 6672 . . . . . . 7 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘𝑆) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
87eqeq1d 2825 . . . . . 6 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘𝑆) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))
96, 8anbi12d 632 . . . . 5 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)))
10 eleq1 2902 . . . . . 6 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (1 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ))
11 fveq2 6672 . . . . . . 7 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘1) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
1211eqeq1d 2825 . . . . . 6 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘1) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))
1310, 12anbi12d 632 . . . . 5 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((1 ∈ ℂ ∧ (abs‘1) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)))
14 ax-1cn 10597 . . . . . 6 1 ∈ ℂ
15 abs1 14659 . . . . . 6 (abs‘1) = 1
1614, 15pm3.2i 473 . . . . 5 (1 ∈ ℂ ∧ (abs‘1) = 1)
179, 13, 16elimhyp 4532 . . . 4 (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)
1817simpli 486 . . 3 if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ
19 normlem7t.1 . . 3 𝐴 ∈ ℋ
20 normlem7t.2 . . 3 𝐵 ∈ ℋ
2117simpri 488 . . 3 (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1
2218, 19, 20, 21normlem7 28895 . 2 (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))
235, 22dedth 4525 1 ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  ifcif 4469   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  1c1 10540   + caddc 10542   · cmul 10544  cle 10678  2c2 11695  ccj 14457  csqrt 14594  abscabs 14595  chba 28698   ·ih csp 28701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-hfvadd 28779  ax-hv0cl 28782  ax-hfvmul 28784  ax-hvmulass 28786  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-hvsub 28750
This theorem is referenced by:  bcsiALT  28958
  Copyright terms: Public domain W3C validator