HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem7tALT Structured version   Visualization version   GIF version

Theorem normlem7tALT 30922
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
normlem7t.1 𝐴 ∈ ℋ
normlem7t.2 𝐵 ∈ ℋ
Assertion
Ref Expression
normlem7tALT ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))

Proof of Theorem normlem7tALT
StepHypRef Expression
1 fveq2 6891 . . . . 5 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (∗‘𝑆) = (∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
21oveq1d 7429 . . . 4 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((∗‘𝑆) · (𝐴 ·ih 𝐵)) = ((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)))
3 oveq1 7421 . . . 4 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 · (𝐵 ·ih 𝐴)) = (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴)))
42, 3oveq12d 7432 . . 3 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) = (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))))
54breq1d 5152 . 2 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))) ↔ (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))))
6 eleq1 2816 . . . . . 6 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ))
7 fveq2 6891 . . . . . . 7 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘𝑆) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
87eqeq1d 2729 . . . . . 6 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘𝑆) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))
96, 8anbi12d 630 . . . . 5 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)))
10 eleq1 2816 . . . . . 6 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (1 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ))
11 fveq2 6891 . . . . . . 7 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘1) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
1211eqeq1d 2729 . . . . . 6 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘1) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))
1310, 12anbi12d 630 . . . . 5 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((1 ∈ ℂ ∧ (abs‘1) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)))
14 ax-1cn 11190 . . . . . 6 1 ∈ ℂ
15 abs1 15270 . . . . . 6 (abs‘1) = 1
1614, 15pm3.2i 470 . . . . 5 (1 ∈ ℂ ∧ (abs‘1) = 1)
179, 13, 16elimhyp 4589 . . . 4 (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)
1817simpli 483 . . 3 if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ
19 normlem7t.1 . . 3 𝐴 ∈ ℋ
20 normlem7t.2 . . 3 𝐵 ∈ ℋ
2117simpri 485 . . 3 (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1
2218, 19, 20, 21normlem7 30919 . 2 (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))
235, 22dedth 4582 1 ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  ifcif 4524   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11130  1c1 11133   + caddc 11135   · cmul 11137  cle 11273  2c2 12291  ccj 15069  csqrt 15206  abscabs 15207  chba 30722   ·ih csp 30725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-hfvadd 30803  ax-hv0cl 30806  ax-hfvmul 30808  ax-hvmulass 30810  ax-hvmul0 30813  ax-hfi 30882  ax-his1 30885  ax-his2 30886  ax-his3 30887  ax-his4 30888
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9459  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-hvsub 30774
This theorem is referenced by:  bcsiALT  30982
  Copyright terms: Public domain W3C validator