HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsssh Structured version   Visualization version   GIF version

Theorem hhsssh 29052
Description: The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
Assertion
Ref Expression
hhsssh (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))

Proof of Theorem hhsssh
StepHypRef Expression
1 hhsst.1 . . . 4 𝑈 = ⟨⟨ + , · ⟩, norm
2 hhsst.2 . . . 4 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
31, 2hhsst 29049 . . 3 (𝐻S𝑊 ∈ (SubSp‘𝑈))
4 shss 28993 . . 3 (𝐻S𝐻 ⊆ ℋ)
53, 4jca 515 . 2 (𝐻S → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
6 eleq1 2877 . . 3 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻S ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S ))
7 eqid 2798 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩
8 xpeq1 5533 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻))
9 xpeq2 5540 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
108, 9eqtrd 2833 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1110reseq2d 5818 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ (𝐻 × 𝐻)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
12 xpeq2 5540 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × 𝐻) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1312reseq2d 5818 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × 𝐻)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
1411, 13opeq12d 4773 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
15 reseq2 5813 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm𝐻) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1614, 15opeq12d 4773 . . . . . . . . 9 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
172, 16syl5eq 2845 . . . . . . . 8 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → 𝑊 = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
1817eleq1d 2874 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝑊 ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
19 sseq1 3940 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
2018, 19anbi12d 633 . . . . . 6 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
21 xpeq1 5533 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ))
22 xpeq2 5540 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2321, 22eqtrd 2833 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2423reseq2d 5818 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ ( ℋ × ℋ)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
25 xpeq2 5540 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × ℋ) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2625reseq2d 5818 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × ℋ)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
2724, 26opeq12d 4773 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
28 reseq2 5813 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm ↾ ℋ) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2927, 28opeq12d 4773 . . . . . . . 8 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
3029eleq1d 2874 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
31 sseq1 3940 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
3230, 31anbi12d 633 . . . . . 6 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
33 ax-hfvadd 28783 . . . . . . . . . . . 12 + :( ℋ × ℋ)⟶ ℋ
34 ffn 6487 . . . . . . . . . . . 12 ( + :( ℋ × ℋ)⟶ ℋ → + Fn ( ℋ × ℋ))
35 fnresdm 6438 . . . . . . . . . . . 12 ( + Fn ( ℋ × ℋ) → ( + ↾ ( ℋ × ℋ)) = + )
3633, 34, 35mp2b 10 . . . . . . . . . . 11 ( + ↾ ( ℋ × ℋ)) = +
37 ax-hfvmul 28788 . . . . . . . . . . . 12 · :(ℂ × ℋ)⟶ ℋ
38 ffn 6487 . . . . . . . . . . . 12 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
39 fnresdm 6438 . . . . . . . . . . . 12 ( · Fn (ℂ × ℋ) → ( · ↾ (ℂ × ℋ)) = · )
4037, 38, 39mp2b 10 . . . . . . . . . . 11 ( · ↾ (ℂ × ℋ)) = ·
4136, 40opeq12i 4770 . . . . . . . . . 10 ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨ + , ·
42 normf 28906 . . . . . . . . . . 11 norm: ℋ⟶ℝ
43 ffn 6487 . . . . . . . . . . 11 (norm: ℋ⟶ℝ → norm Fn ℋ)
44 fnresdm 6438 . . . . . . . . . . 11 (norm Fn ℋ → (norm ↾ ℋ) = norm)
4542, 43, 44mp2b 10 . . . . . . . . . 10 (norm ↾ ℋ) = norm
4641, 45opeq12i 4770 . . . . . . . . 9 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨ + , · ⟩, norm
4746, 1eqtr4i 2824 . . . . . . . 8 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = 𝑈
481hhnv 28948 . . . . . . . . 9 𝑈 ∈ NrmCVec
49 eqid 2798 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
5049sspid 28508 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝑈 ∈ (SubSp‘𝑈))
5148, 50ax-mp 5 . . . . . . . 8 𝑈 ∈ (SubSp‘𝑈)
5247, 51eqeltri 2886 . . . . . . 7 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈)
53 ssid 3937 . . . . . . 7 ℋ ⊆ ℋ
5452, 53pm3.2i 474 . . . . . 6 (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ)
5520, 32, 54elimhyp 4488 . . . . 5 (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)
5655simpli 487 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)
5755simpri 489 . . . 4 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ
581, 7, 56, 57hhshsslem2 29051 . . 3 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S
596, 58dedth 4481 . 2 ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) → 𝐻S )
605, 59impbii 212 1 (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881  ifcif 4425  cop 4531   × cxp 5517  cres 5521   Fn wfn 6319  wf 6320  cfv 6324  cc 10524  cr 10525  NrmCVeccnv 28367  SubSpcss 28504  chba 28702   + cva 28703   · csm 28704  normcno 28706   S csh 28711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-lm 21834  df-haus 21920  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383  df-ims 28384  df-ssp 28505  df-hnorm 28751  df-hba 28752  df-hvsub 28754  df-hlim 28755  df-sh 28990  df-ch 29004  df-ch0 29036
This theorem is referenced by:  hhsssh2  29053
  Copyright terms: Public domain W3C validator