HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsssh Structured version   Visualization version   GIF version

Theorem hhsssh 28963
Description: The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
Assertion
Ref Expression
hhsssh (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))

Proof of Theorem hhsssh
StepHypRef Expression
1 hhsst.1 . . . 4 𝑈 = ⟨⟨ + , · ⟩, norm
2 hhsst.2 . . . 4 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
31, 2hhsst 28960 . . 3 (𝐻S𝑊 ∈ (SubSp‘𝑈))
4 shss 28904 . . 3 (𝐻S𝐻 ⊆ ℋ)
53, 4jca 512 . 2 (𝐻S → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
6 eleq1 2904 . . 3 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻S ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S ))
7 eqid 2825 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩
8 xpeq1 5567 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻))
9 xpeq2 5574 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
108, 9eqtrd 2860 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1110reseq2d 5851 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ (𝐻 × 𝐻)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
12 xpeq2 5574 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × 𝐻) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1312reseq2d 5851 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × 𝐻)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
1411, 13opeq12d 4809 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
15 reseq2 5846 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm𝐻) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1614, 15opeq12d 4809 . . . . . . . . 9 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
172, 16syl5eq 2872 . . . . . . . 8 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → 𝑊 = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
1817eleq1d 2901 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝑊 ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
19 sseq1 3995 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
2018, 19anbi12d 630 . . . . . 6 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
21 xpeq1 5567 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ))
22 xpeq2 5574 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2321, 22eqtrd 2860 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2423reseq2d 5851 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ ( ℋ × ℋ)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
25 xpeq2 5574 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × ℋ) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2625reseq2d 5851 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × ℋ)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
2724, 26opeq12d 4809 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
28 reseq2 5846 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm ↾ ℋ) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2927, 28opeq12d 4809 . . . . . . . 8 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
3029eleq1d 2901 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
31 sseq1 3995 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
3230, 31anbi12d 630 . . . . . 6 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
33 ax-hfvadd 28694 . . . . . . . . . . . 12 + :( ℋ × ℋ)⟶ ℋ
34 ffn 6510 . . . . . . . . . . . 12 ( + :( ℋ × ℋ)⟶ ℋ → + Fn ( ℋ × ℋ))
35 fnresdm 6462 . . . . . . . . . . . 12 ( + Fn ( ℋ × ℋ) → ( + ↾ ( ℋ × ℋ)) = + )
3633, 34, 35mp2b 10 . . . . . . . . . . 11 ( + ↾ ( ℋ × ℋ)) = +
37 ax-hfvmul 28699 . . . . . . . . . . . 12 · :(ℂ × ℋ)⟶ ℋ
38 ffn 6510 . . . . . . . . . . . 12 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
39 fnresdm 6462 . . . . . . . . . . . 12 ( · Fn (ℂ × ℋ) → ( · ↾ (ℂ × ℋ)) = · )
4037, 38, 39mp2b 10 . . . . . . . . . . 11 ( · ↾ (ℂ × ℋ)) = ·
4136, 40opeq12i 4806 . . . . . . . . . 10 ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨ + , ·
42 normf 28817 . . . . . . . . . . 11 norm: ℋ⟶ℝ
43 ffn 6510 . . . . . . . . . . 11 (norm: ℋ⟶ℝ → norm Fn ℋ)
44 fnresdm 6462 . . . . . . . . . . 11 (norm Fn ℋ → (norm ↾ ℋ) = norm)
4542, 43, 44mp2b 10 . . . . . . . . . 10 (norm ↾ ℋ) = norm
4641, 45opeq12i 4806 . . . . . . . . 9 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨ + , · ⟩, norm
4746, 1eqtr4i 2851 . . . . . . . 8 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = 𝑈
481hhnv 28859 . . . . . . . . 9 𝑈 ∈ NrmCVec
49 eqid 2825 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
5049sspid 28419 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝑈 ∈ (SubSp‘𝑈))
5148, 50ax-mp 5 . . . . . . . 8 𝑈 ∈ (SubSp‘𝑈)
5247, 51eqeltri 2913 . . . . . . 7 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈)
53 ssid 3992 . . . . . . 7 ℋ ⊆ ℋ
5452, 53pm3.2i 471 . . . . . 6 (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ)
5520, 32, 54elimhyp 4532 . . . . 5 (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)
5655simpli 484 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)
5755simpri 486 . . . 4 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ
581, 7, 56, 57hhshsslem2 28962 . . 3 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S
596, 58dedth 4525 . 2 ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) → 𝐻S )
605, 59impbii 210 1 (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1530  wcel 2107  wss 3939  ifcif 4469  cop 4569   × cxp 5551  cres 5555   Fn wfn 6346  wf 6347  cfv 6351  cc 10527  cr 10528  NrmCVeccnv 28278  SubSpcss 28415  chba 28613   + cva 28614   · csm 28615  normcno 28617   S csh 28622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609  ax-hilex 28693  ax-hfvadd 28694  ax-hvcom 28695  ax-hvass 28696  ax-hv0cl 28697  ax-hvaddid 28698  ax-hfvmul 28699  ax-hvmulid 28700  ax-hvmulass 28701  ax-hvdistr1 28702  ax-hvdistr2 28703  ax-hvmul0 28704  ax-hfi 28773  ax-his1 28776  ax-his2 28777  ax-his3 28778  ax-his4 28779
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-icc 12738  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-topgen 16710  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-top 21421  df-topon 21438  df-bases 21473  df-lm 21756  df-haus 21842  df-grpo 28187  df-gid 28188  df-ginv 28189  df-gdiv 28190  df-ablo 28239  df-vc 28253  df-nv 28286  df-va 28289  df-ba 28290  df-sm 28291  df-0v 28292  df-vs 28293  df-nmcv 28294  df-ims 28295  df-ssp 28416  df-hnorm 28662  df-hba 28663  df-hvsub 28665  df-hlim 28666  df-sh 28901  df-ch 28915  df-ch0 28947
This theorem is referenced by:  hhsssh2  28964
  Copyright terms: Public domain W3C validator