HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsssh Structured version   Visualization version   GIF version

Theorem hhsssh 29046
Description: The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
Assertion
Ref Expression
hhsssh (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))

Proof of Theorem hhsssh
StepHypRef Expression
1 hhsst.1 . . . 4 𝑈 = ⟨⟨ + , · ⟩, norm
2 hhsst.2 . . . 4 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
31, 2hhsst 29043 . . 3 (𝐻S𝑊 ∈ (SubSp‘𝑈))
4 shss 28987 . . 3 (𝐻S𝐻 ⊆ ℋ)
53, 4jca 514 . 2 (𝐻S → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
6 eleq1 2900 . . 3 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻S ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S ))
7 eqid 2821 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩
8 xpeq1 5569 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻))
9 xpeq2 5576 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
108, 9eqtrd 2856 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1110reseq2d 5853 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ (𝐻 × 𝐻)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
12 xpeq2 5576 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × 𝐻) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1312reseq2d 5853 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × 𝐻)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
1411, 13opeq12d 4811 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
15 reseq2 5848 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm𝐻) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1614, 15opeq12d 4811 . . . . . . . . 9 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
172, 16syl5eq 2868 . . . . . . . 8 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → 𝑊 = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
1817eleq1d 2897 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝑊 ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
19 sseq1 3992 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
2018, 19anbi12d 632 . . . . . 6 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
21 xpeq1 5569 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ))
22 xpeq2 5576 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2321, 22eqtrd 2856 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2423reseq2d 5853 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ ( ℋ × ℋ)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
25 xpeq2 5576 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × ℋ) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2625reseq2d 5853 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × ℋ)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
2724, 26opeq12d 4811 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
28 reseq2 5848 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm ↾ ℋ) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2927, 28opeq12d 4811 . . . . . . . 8 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
3029eleq1d 2897 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
31 sseq1 3992 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
3230, 31anbi12d 632 . . . . . 6 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
33 ax-hfvadd 28777 . . . . . . . . . . . 12 + :( ℋ × ℋ)⟶ ℋ
34 ffn 6514 . . . . . . . . . . . 12 ( + :( ℋ × ℋ)⟶ ℋ → + Fn ( ℋ × ℋ))
35 fnresdm 6466 . . . . . . . . . . . 12 ( + Fn ( ℋ × ℋ) → ( + ↾ ( ℋ × ℋ)) = + )
3633, 34, 35mp2b 10 . . . . . . . . . . 11 ( + ↾ ( ℋ × ℋ)) = +
37 ax-hfvmul 28782 . . . . . . . . . . . 12 · :(ℂ × ℋ)⟶ ℋ
38 ffn 6514 . . . . . . . . . . . 12 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
39 fnresdm 6466 . . . . . . . . . . . 12 ( · Fn (ℂ × ℋ) → ( · ↾ (ℂ × ℋ)) = · )
4037, 38, 39mp2b 10 . . . . . . . . . . 11 ( · ↾ (ℂ × ℋ)) = ·
4136, 40opeq12i 4808 . . . . . . . . . 10 ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨ + , ·
42 normf 28900 . . . . . . . . . . 11 norm: ℋ⟶ℝ
43 ffn 6514 . . . . . . . . . . 11 (norm: ℋ⟶ℝ → norm Fn ℋ)
44 fnresdm 6466 . . . . . . . . . . 11 (norm Fn ℋ → (norm ↾ ℋ) = norm)
4542, 43, 44mp2b 10 . . . . . . . . . 10 (norm ↾ ℋ) = norm
4641, 45opeq12i 4808 . . . . . . . . 9 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨ + , · ⟩, norm
4746, 1eqtr4i 2847 . . . . . . . 8 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = 𝑈
481hhnv 28942 . . . . . . . . 9 𝑈 ∈ NrmCVec
49 eqid 2821 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
5049sspid 28502 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝑈 ∈ (SubSp‘𝑈))
5148, 50ax-mp 5 . . . . . . . 8 𝑈 ∈ (SubSp‘𝑈)
5247, 51eqeltri 2909 . . . . . . 7 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈)
53 ssid 3989 . . . . . . 7 ℋ ⊆ ℋ
5452, 53pm3.2i 473 . . . . . 6 (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ)
5520, 32, 54elimhyp 4530 . . . . 5 (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)
5655simpli 486 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)
5755simpri 488 . . . 4 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ
581, 7, 56, 57hhshsslem2 29045 . . 3 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S
596, 58dedth 4523 . 2 ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) → 𝐻S )
605, 59impbii 211 1 (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3936  ifcif 4467  cop 4573   × cxp 5553  cres 5557   Fn wfn 6350  wf 6351  cfv 6355  cc 10535  cr 10536  NrmCVeccnv 28361  SubSpcss 28498  chba 28696   + cva 28697   · csm 28698  normcno 28700   S csh 28705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617  ax-hilex 28776  ax-hfvadd 28777  ax-hvcom 28778  ax-hvass 28779  ax-hv0cl 28780  ax-hvaddid 28781  ax-hfvmul 28782  ax-hvmulid 28783  ax-hvmulass 28784  ax-hvdistr1 28785  ax-hvdistr2 28786  ax-hvmul0 28787  ax-hfi 28856  ax-his1 28859  ax-his2 28860  ax-his3 28861  ax-his4 28862
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-lm 21837  df-haus 21923  df-grpo 28270  df-gid 28271  df-ginv 28272  df-gdiv 28273  df-ablo 28322  df-vc 28336  df-nv 28369  df-va 28372  df-ba 28373  df-sm 28374  df-0v 28375  df-vs 28376  df-nmcv 28377  df-ims 28378  df-ssp 28499  df-hnorm 28745  df-hba 28746  df-hvsub 28748  df-hlim 28749  df-sh 28984  df-ch 28998  df-ch0 29030
This theorem is referenced by:  hhsssh2  29047
  Copyright terms: Public domain W3C validator