![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chirred | Structured version Visualization version GIF version |
Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 16-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chirred | ⊢ ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) → (𝐴 = 0ℋ ∨ 𝐴 = ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2735 | . . 3 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (𝐴 = 0ℋ ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = 0ℋ)) | |
2 | eqeq1 2735 | . . 3 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (𝐴 = ℋ ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = ℋ)) | |
3 | 1, 2 | orbi12d 916 | . 2 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → ((𝐴 = 0ℋ ∨ 𝐴 = ℋ) ↔ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = 0ℋ ∨ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = ℋ))) |
4 | eleq1 2820 | . . . . . 6 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (𝐴 ∈ Cℋ ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ )) | |
5 | nfv 1916 | . . . . . . . . . 10 ⊢ Ⅎ𝑥 𝐴 ∈ Cℋ | |
6 | nfra1 3280 | . . . . . . . . . 10 ⊢ Ⅎ𝑥∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥 | |
7 | 5, 6 | nfan 1901 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) |
8 | nfcv 2902 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐴 | |
9 | nfcv 2902 | . . . . . . . . 9 ⊢ Ⅎ𝑥0ℋ | |
10 | 7, 8, 9 | nfif 4558 | . . . . . . . 8 ⊢ Ⅎ𝑥if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) |
11 | 10 | nfeq2 2919 | . . . . . . 7 ⊢ Ⅎ𝑥 𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) |
12 | breq1 5151 | . . . . . . 7 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (𝐴 𝐶ℋ 𝑥 ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥)) | |
13 | 11, 12 | ralbid 3269 | . . . . . 6 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥)) |
14 | 4, 13 | anbi12d 630 | . . . . 5 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) ↔ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥))) |
15 | eleq1 2820 | . . . . . 6 ⊢ (0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (0ℋ ∈ Cℋ ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ )) | |
16 | 10 | nfeq2 2919 | . . . . . . 7 ⊢ Ⅎ𝑥0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) |
17 | breq1 5151 | . . . . . . 7 ⊢ (0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (0ℋ 𝐶ℋ 𝑥 ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥)) | |
18 | 16, 17 | ralbid 3269 | . . . . . 6 ⊢ (0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (∀𝑥 ∈ Cℋ 0ℋ 𝐶ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥)) |
19 | 15, 18 | anbi12d 630 | . . . . 5 ⊢ (0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → ((0ℋ ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 0ℋ 𝐶ℋ 𝑥) ↔ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥))) |
20 | h0elch 30776 | . . . . . 6 ⊢ 0ℋ ∈ Cℋ | |
21 | cm0 31130 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → 0ℋ 𝐶ℋ 𝑥) | |
22 | 21 | rgen 3062 | . . . . . 6 ⊢ ∀𝑥 ∈ Cℋ 0ℋ 𝐶ℋ 𝑥 |
23 | 20, 22 | pm3.2i 470 | . . . . 5 ⊢ (0ℋ ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 0ℋ 𝐶ℋ 𝑥) |
24 | 14, 19, 23 | elimhyp 4593 | . . . 4 ⊢ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥) |
25 | 24 | simpli 483 | . . 3 ⊢ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ |
26 | 24 | simpri 485 | . . . 4 ⊢ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥 |
27 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑥 𝐶ℋ | |
28 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
29 | 10, 27, 28 | nfbr 5195 | . . . . 5 ⊢ Ⅎ𝑥if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑦 |
30 | breq2 5152 | . . . . 5 ⊢ (𝑥 = 𝑦 → (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥 ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑦)) | |
31 | 29, 30 | rspc 3600 | . . . 4 ⊢ (𝑦 ∈ Cℋ → (∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥 → if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑦)) |
32 | 26, 31 | mpi 20 | . . 3 ⊢ (𝑦 ∈ Cℋ → if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑦) |
33 | 25, 32 | chirredi 31915 | . 2 ⊢ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = 0ℋ ∨ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = ℋ) |
34 | 3, 33 | dedth 4586 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) → (𝐴 = 0ℋ ∨ 𝐴 = ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ifcif 4528 class class class wbr 5148 ℋchba 30440 Cℋ cch 30450 0ℋc0h 30456 𝐶ℋ ccm 30457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-inf2 9639 ax-cc 10433 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 ax-hilex 30520 ax-hfvadd 30521 ax-hvcom 30522 ax-hvass 30523 ax-hv0cl 30524 ax-hvaddid 30525 ax-hfvmul 30526 ax-hvmulid 30527 ax-hvmulass 30528 ax-hvdistr1 30529 ax-hvdistr2 30530 ax-hvmul0 30531 ax-hfi 30600 ax-his1 30603 ax-his2 30604 ax-his3 30605 ax-his4 30606 ax-hcompl 30723 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-oadd 8473 df-omul 8474 df-er 8706 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-card 9937 df-acn 9940 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-rlim 15438 df-sum 15638 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-cn 22952 df-cnp 22953 df-lm 22954 df-haus 23040 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-tms 24049 df-cfil 25004 df-cau 25005 df-cmet 25006 df-grpo 30014 df-gid 30015 df-ginv 30016 df-gdiv 30017 df-ablo 30066 df-vc 30080 df-nv 30113 df-va 30116 df-ba 30117 df-sm 30118 df-0v 30119 df-vs 30120 df-nmcv 30121 df-ims 30122 df-dip 30222 df-ssp 30243 df-ph 30334 df-cbn 30384 df-hnorm 30489 df-hba 30490 df-hvsub 30492 df-hlim 30493 df-hcau 30494 df-sh 30728 df-ch 30742 df-oc 30773 df-ch0 30774 df-shs 30829 df-span 30830 df-chj 30831 df-chsup 30832 df-pjh 30916 df-cm 31104 df-cv 31800 df-at 31859 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |