Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chirred | Structured version Visualization version GIF version |
Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 16-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chirred | ⊢ ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) → (𝐴 = 0ℋ ∨ 𝐴 = ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . 3 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (𝐴 = 0ℋ ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = 0ℋ)) | |
2 | eqeq1 2742 | . . 3 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (𝐴 = ℋ ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = ℋ)) | |
3 | 1, 2 | orbi12d 916 | . 2 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → ((𝐴 = 0ℋ ∨ 𝐴 = ℋ) ↔ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = 0ℋ ∨ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = ℋ))) |
4 | eleq1 2826 | . . . . . 6 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (𝐴 ∈ Cℋ ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ )) | |
5 | nfv 1917 | . . . . . . . . . 10 ⊢ Ⅎ𝑥 𝐴 ∈ Cℋ | |
6 | nfra1 3143 | . . . . . . . . . 10 ⊢ Ⅎ𝑥∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥 | |
7 | 5, 6 | nfan 1902 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) |
8 | nfcv 2907 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐴 | |
9 | nfcv 2907 | . . . . . . . . 9 ⊢ Ⅎ𝑥0ℋ | |
10 | 7, 8, 9 | nfif 4489 | . . . . . . . 8 ⊢ Ⅎ𝑥if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) |
11 | 10 | nfeq2 2924 | . . . . . . 7 ⊢ Ⅎ𝑥 𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) |
12 | breq1 5076 | . . . . . . 7 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (𝐴 𝐶ℋ 𝑥 ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥)) | |
13 | 11, 12 | ralbid 3159 | . . . . . 6 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥)) |
14 | 4, 13 | anbi12d 631 | . . . . 5 ⊢ (𝐴 = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) ↔ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥))) |
15 | eleq1 2826 | . . . . . 6 ⊢ (0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (0ℋ ∈ Cℋ ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ )) | |
16 | 10 | nfeq2 2924 | . . . . . . 7 ⊢ Ⅎ𝑥0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) |
17 | breq1 5076 | . . . . . . 7 ⊢ (0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (0ℋ 𝐶ℋ 𝑥 ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥)) | |
18 | 16, 17 | ralbid 3159 | . . . . . 6 ⊢ (0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → (∀𝑥 ∈ Cℋ 0ℋ 𝐶ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥)) |
19 | 15, 18 | anbi12d 631 | . . . . 5 ⊢ (0ℋ = if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) → ((0ℋ ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 0ℋ 𝐶ℋ 𝑥) ↔ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥))) |
20 | h0elch 29625 | . . . . . 6 ⊢ 0ℋ ∈ Cℋ | |
21 | cm0 29979 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → 0ℋ 𝐶ℋ 𝑥) | |
22 | 21 | rgen 3074 | . . . . . 6 ⊢ ∀𝑥 ∈ Cℋ 0ℋ 𝐶ℋ 𝑥 |
23 | 20, 22 | pm3.2i 471 | . . . . 5 ⊢ (0ℋ ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 0ℋ 𝐶ℋ 𝑥) |
24 | 14, 19, 23 | elimhyp 4524 | . . . 4 ⊢ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥) |
25 | 24 | simpli 484 | . . 3 ⊢ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) ∈ Cℋ |
26 | 24 | simpri 486 | . . . 4 ⊢ ∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥 |
27 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥 𝐶ℋ | |
28 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
29 | 10, 27, 28 | nfbr 5120 | . . . . 5 ⊢ Ⅎ𝑥if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑦 |
30 | breq2 5077 | . . . . 5 ⊢ (𝑥 = 𝑦 → (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥 ↔ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑦)) | |
31 | 29, 30 | rspc 3546 | . . . 4 ⊢ (𝑦 ∈ Cℋ → (∀𝑥 ∈ Cℋ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑥 → if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑦)) |
32 | 26, 31 | mpi 20 | . . 3 ⊢ (𝑦 ∈ Cℋ → if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) 𝐶ℋ 𝑦) |
33 | 25, 32 | chirredi 30764 | . 2 ⊢ (if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = 0ℋ ∨ if((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥), 𝐴, 0ℋ) = ℋ) |
34 | 3, 33 | dedth 4517 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) → (𝐴 = 0ℋ ∨ 𝐴 = ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ifcif 4459 class class class wbr 5073 ℋchba 29289 Cℋ cch 29299 0ℋc0h 29305 𝐶ℋ ccm 29306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cc 10201 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 ax-addf 10960 ax-mulf 10961 ax-hilex 29369 ax-hfvadd 29370 ax-hvcom 29371 ax-hvass 29372 ax-hv0cl 29373 ax-hvaddid 29374 ax-hfvmul 29375 ax-hvmulid 29376 ax-hvmulass 29377 ax-hvdistr1 29378 ax-hvdistr2 29379 ax-hvmul0 29380 ax-hfi 29449 ax-his1 29452 ax-his2 29453 ax-his3 29454 ax-his4 29455 ax-hcompl 29572 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-oadd 8288 df-omul 8289 df-er 8485 df-map 8604 df-pm 8605 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-fi 9157 df-sup 9188 df-inf 9189 df-oi 9256 df-card 9707 df-acn 9710 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-q 12699 df-rp 12741 df-xneg 12858 df-xadd 12859 df-xmul 12860 df-ioo 13093 df-ico 13095 df-icc 13096 df-fz 13250 df-fzo 13393 df-fl 13522 df-seq 13732 df-exp 13793 df-hash 14055 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-clim 15207 df-rlim 15208 df-sum 15408 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-starv 16987 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-unif 16995 df-hom 16996 df-cco 16997 df-rest 17143 df-topn 17144 df-0g 17162 df-gsum 17163 df-topgen 17164 df-pt 17165 df-prds 17168 df-xrs 17223 df-qtop 17228 df-imas 17229 df-xps 17231 df-mre 17305 df-mrc 17306 df-acs 17308 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-submnd 18441 df-mulg 18711 df-cntz 18933 df-cmn 19398 df-psmet 20599 df-xmet 20600 df-met 20601 df-bl 20602 df-mopn 20603 df-fbas 20604 df-fg 20605 df-cnfld 20608 df-top 22053 df-topon 22070 df-topsp 22092 df-bases 22106 df-cld 22180 df-ntr 22181 df-cls 22182 df-nei 22259 df-cn 22388 df-cnp 22389 df-lm 22390 df-haus 22476 df-tx 22723 df-hmeo 22916 df-fil 23007 df-fm 23099 df-flim 23100 df-flf 23101 df-xms 23483 df-ms 23484 df-tms 23485 df-cfil 24429 df-cau 24430 df-cmet 24431 df-grpo 28863 df-gid 28864 df-ginv 28865 df-gdiv 28866 df-ablo 28915 df-vc 28929 df-nv 28962 df-va 28965 df-ba 28966 df-sm 28967 df-0v 28968 df-vs 28969 df-nmcv 28970 df-ims 28971 df-dip 29071 df-ssp 29092 df-ph 29183 df-cbn 29233 df-hnorm 29338 df-hba 29339 df-hvsub 29341 df-hlim 29342 df-hcau 29343 df-sh 29577 df-ch 29591 df-oc 29622 df-ch0 29623 df-shs 29678 df-span 29679 df-chj 29680 df-chsup 29681 df-pjh 29765 df-cm 29953 df-cv 30649 df-at 30708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |