Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsucncmp Structured version   Visualization version   GIF version

Theorem limsucncmp 36407
Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
Assertion
Ref Expression
limsucncmp (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp)

Proof of Theorem limsucncmp
StepHypRef Expression
1 suceq 6388 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On))
21eleq1d 2813 . . 3 (𝐴 = if(Lim 𝐴, 𝐴, On) → (suc 𝐴 ∈ Comp ↔ suc if(Lim 𝐴, 𝐴, On) ∈ Comp))
32notbid 318 . 2 (𝐴 = if(Lim 𝐴, 𝐴, On) → (¬ suc 𝐴 ∈ Comp ↔ ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp))
4 limeq 6332 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On)))
5 limeq 6332 . . . 4 (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On)))
6 limon 7791 . . . 4 Lim On
74, 5, 6elimhyp 4550 . . 3 Lim if(Lim 𝐴, 𝐴, On)
87limsucncmpi 36406 . 2 ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp
93, 8dedth 4543 1 (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  ifcif 4484  Oncon0 6320  Lim wlim 6321  suc csuc 6322  Compccmp 23249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-en 8896  df-fin 8899  df-cmp 23250
This theorem is referenced by:  ordcmp  36408
  Copyright terms: Public domain W3C validator