Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsucncmp Structured version   Visualization version   GIF version

Theorem limsucncmp 36428
Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
Assertion
Ref Expression
limsucncmp (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp)

Proof of Theorem limsucncmp
StepHypRef Expression
1 suceq 6451 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On))
21eleq1d 2823 . . 3 (𝐴 = if(Lim 𝐴, 𝐴, On) → (suc 𝐴 ∈ Comp ↔ suc if(Lim 𝐴, 𝐴, On) ∈ Comp))
32notbid 318 . 2 (𝐴 = if(Lim 𝐴, 𝐴, On) → (¬ suc 𝐴 ∈ Comp ↔ ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp))
4 limeq 6397 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On)))
5 limeq 6397 . . . 4 (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On)))
6 limon 7855 . . . 4 Lim On
74, 5, 6elimhyp 4595 . . 3 Lim if(Lim 𝐴, 𝐴, On)
87limsucncmpi 36427 . 2 ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp
93, 8dedth 4588 1 (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536  wcel 2105  ifcif 4530  Oncon0 6385  Lim wlim 6386  suc csuc 6387  Compccmp 23409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-en 8984  df-fin 8987  df-cmp 23410
This theorem is referenced by:  ordcmp  36429
  Copyright terms: Public domain W3C validator