| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsucncmp | Structured version Visualization version GIF version | ||
| Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.) |
| Ref | Expression |
|---|---|
| limsucncmp | ⊢ (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq 6419 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On)) | |
| 2 | 1 | eleq1d 2819 | . . 3 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (suc 𝐴 ∈ Comp ↔ suc if(Lim 𝐴, 𝐴, On) ∈ Comp)) |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (¬ suc 𝐴 ∈ Comp ↔ ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp)) |
| 4 | limeq 6364 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
| 5 | limeq 6364 | . . . 4 ⊢ (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
| 6 | limon 7828 | . . . 4 ⊢ Lim On | |
| 7 | 4, 5, 6 | elimhyp 4566 | . . 3 ⊢ Lim if(Lim 𝐴, 𝐴, On) |
| 8 | 7 | limsucncmpi 36409 | . 2 ⊢ ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp |
| 9 | 3, 8 | dedth 4559 | 1 ⊢ (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ifcif 4500 Oncon0 6352 Lim wlim 6353 suc csuc 6354 Compccmp 23322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-om 7860 df-en 8958 df-fin 8961 df-cmp 23323 |
| This theorem is referenced by: ordcmp 36411 |
| Copyright terms: Public domain | W3C validator |