![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsucncmp | Structured version Visualization version GIF version |
Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.) |
Ref | Expression |
---|---|
limsucncmp | ⊢ (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceq 6451 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On)) | |
2 | 1 | eleq1d 2823 | . . 3 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (suc 𝐴 ∈ Comp ↔ suc if(Lim 𝐴, 𝐴, On) ∈ Comp)) |
3 | 2 | notbid 318 | . 2 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (¬ suc 𝐴 ∈ Comp ↔ ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp)) |
4 | limeq 6397 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
5 | limeq 6397 | . . . 4 ⊢ (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
6 | limon 7855 | . . . 4 ⊢ Lim On | |
7 | 4, 5, 6 | elimhyp 4595 | . . 3 ⊢ Lim if(Lim 𝐴, 𝐴, On) |
8 | 7 | limsucncmpi 36427 | . 2 ⊢ ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp |
9 | 3, 8 | dedth 4588 | 1 ⊢ (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ∈ wcel 2105 ifcif 4530 Oncon0 6385 Lim wlim 6386 suc csuc 6387 Compccmp 23409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-om 7887 df-en 8984 df-fin 8987 df-cmp 23410 |
This theorem is referenced by: ordcmp 36429 |
Copyright terms: Public domain | W3C validator |