| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsucncmp | Structured version Visualization version GIF version | ||
| Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.) |
| Ref | Expression |
|---|---|
| limsucncmp | ⊢ (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq 6403 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On)) | |
| 2 | 1 | eleq1d 2814 | . . 3 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (suc 𝐴 ∈ Comp ↔ suc if(Lim 𝐴, 𝐴, On) ∈ Comp)) |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (¬ suc 𝐴 ∈ Comp ↔ ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp)) |
| 4 | limeq 6347 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
| 5 | limeq 6347 | . . . 4 ⊢ (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
| 6 | limon 7814 | . . . 4 ⊢ Lim On | |
| 7 | 4, 5, 6 | elimhyp 4557 | . . 3 ⊢ Lim if(Lim 𝐴, 𝐴, On) |
| 8 | 7 | limsucncmpi 36440 | . 2 ⊢ ¬ suc if(Lim 𝐴, 𝐴, On) ∈ Comp |
| 9 | 3, 8 | dedth 4550 | 1 ⊢ (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4491 Oncon0 6335 Lim wlim 6336 suc csuc 6337 Compccmp 23280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-en 8922 df-fin 8925 df-cmp 23281 |
| This theorem is referenced by: ordcmp 36442 |
| Copyright terms: Public domain | W3C validator |