![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limensuc | Structured version Visualization version GIF version |
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
limensuc | ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2822 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴 ∈ 𝑉 ↔ if(Lim 𝐴, 𝐴, On) ∈ 𝑉)) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → 𝐴 = if(Lim 𝐴, 𝐴, On)) | |
3 | suceq 6431 | . . . . 5 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On)) | |
4 | 2, 3 | breq12d 5162 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴 ≈ suc 𝐴 ↔ if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On))) |
5 | 1, 4 | imbi12d 345 | . . 3 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → ((𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) ↔ (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On)))) |
6 | limeq 6377 | . . . . 5 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
7 | limeq 6377 | . . . . 5 ⊢ (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
8 | limon 7824 | . . . . 5 ⊢ Lim On | |
9 | 6, 7, 8 | elimhyp 4594 | . . . 4 ⊢ Lim if(Lim 𝐴, 𝐴, On) |
10 | 9 | limensuci 9153 | . . 3 ⊢ (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On)) |
11 | 5, 10 | dedth 4587 | . 2 ⊢ (Lim 𝐴 → (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴)) |
12 | 11 | impcom 409 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ifcif 4529 class class class wbr 5149 Oncon0 6365 Lim wlim 6366 suc csuc 6367 ≈ cen 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 |
This theorem is referenced by: infensuc 9155 |
Copyright terms: Public domain | W3C validator |