![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limensuc | Structured version Visualization version GIF version |
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
limensuc | ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2822 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴 ∈ 𝑉 ↔ if(Lim 𝐴, 𝐴, On) ∈ 𝑉)) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → 𝐴 = if(Lim 𝐴, 𝐴, On)) | |
3 | suceq 6384 | . . . . 5 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On)) | |
4 | 2, 3 | breq12d 5119 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴 ≈ suc 𝐴 ↔ if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On))) |
5 | 1, 4 | imbi12d 345 | . . 3 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → ((𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) ↔ (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On)))) |
6 | limeq 6330 | . . . . 5 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
7 | limeq 6330 | . . . . 5 ⊢ (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
8 | limon 7772 | . . . . 5 ⊢ Lim On | |
9 | 6, 7, 8 | elimhyp 4552 | . . . 4 ⊢ Lim if(Lim 𝐴, 𝐴, On) |
10 | 9 | limensuci 9100 | . . 3 ⊢ (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On)) |
11 | 5, 10 | dedth 4545 | . 2 ⊢ (Lim 𝐴 → (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴)) |
12 | 11 | impcom 409 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ifcif 4487 class class class wbr 5106 Oncon0 6318 Lim wlim 6319 suc csuc 6320 ≈ cen 8883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-er 8651 df-en 8887 df-dom 8888 |
This theorem is referenced by: infensuc 9102 |
Copyright terms: Public domain | W3C validator |