MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuc Structured version   Visualization version   GIF version

Theorem limensuc 8890
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limensuc ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴)

Proof of Theorem limensuc
StepHypRef Expression
1 eleq1 2826 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴𝑉 ↔ if(Lim 𝐴, 𝐴, On) ∈ 𝑉))
2 id 22 . . . . 5 (𝐴 = if(Lim 𝐴, 𝐴, On) → 𝐴 = if(Lim 𝐴, 𝐴, On))
3 suceq 6316 . . . . 5 (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On))
42, 3breq12d 5083 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴 ≈ suc 𝐴 ↔ if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On)))
51, 4imbi12d 344 . . 3 (𝐴 = if(Lim 𝐴, 𝐴, On) → ((𝐴𝑉𝐴 ≈ suc 𝐴) ↔ (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On))))
6 limeq 6263 . . . . 5 (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On)))
7 limeq 6263 . . . . 5 (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On)))
8 limon 7658 . . . . 5 Lim On
96, 7, 8elimhyp 4521 . . . 4 Lim if(Lim 𝐴, 𝐴, On)
109limensuci 8889 . . 3 (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On))
115, 10dedth 4514 . 2 (Lim 𝐴 → (𝐴𝑉𝐴 ≈ suc 𝐴))
1211impcom 407 1 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ifcif 4456   class class class wbr 5070  Oncon0 6251  Lim wlim 6252  suc csuc 6253  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693
This theorem is referenced by:  infensuc  8891
  Copyright terms: Public domain W3C validator