MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuc Structured version   Visualization version   GIF version

Theorem limensuc 9185
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limensuc ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴)

Proof of Theorem limensuc
StepHypRef Expression
1 eleq1 2817 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴𝑉 ↔ if(Lim 𝐴, 𝐴, On) ∈ 𝑉))
2 id 22 . . . . 5 (𝐴 = if(Lim 𝐴, 𝐴, On) → 𝐴 = if(Lim 𝐴, 𝐴, On))
3 suceq 6440 . . . . 5 (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On))
42, 3breq12d 5165 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴 ≈ suc 𝐴 ↔ if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On)))
51, 4imbi12d 343 . . 3 (𝐴 = if(Lim 𝐴, 𝐴, On) → ((𝐴𝑉𝐴 ≈ suc 𝐴) ↔ (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On))))
6 limeq 6386 . . . . 5 (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On)))
7 limeq 6386 . . . . 5 (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On)))
8 limon 7845 . . . . 5 Lim On
96, 7, 8elimhyp 4597 . . . 4 Lim if(Lim 𝐴, 𝐴, On)
109limensuci 9184 . . 3 (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On))
115, 10dedth 4590 . 2 (Lim 𝐴 → (𝐴𝑉𝐴 ≈ suc 𝐴))
1211impcom 406 1 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  ifcif 4532   class class class wbr 5152  Oncon0 6374  Lim wlim 6375  suc csuc 6376  cen 8967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-er 8731  df-en 8971  df-dom 8972
This theorem is referenced by:  infensuc  9186
  Copyright terms: Public domain W3C validator