![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limensuc | Structured version Visualization version GIF version |
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
limensuc | ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2813 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴 ∈ 𝑉 ↔ if(Lim 𝐴, 𝐴, On) ∈ 𝑉)) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → 𝐴 = if(Lim 𝐴, 𝐴, On)) | |
3 | suceq 6437 | . . . . 5 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On)) | |
4 | 2, 3 | breq12d 5162 | . . . 4 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴 ≈ suc 𝐴 ↔ if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On))) |
5 | 1, 4 | imbi12d 343 | . . 3 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → ((𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) ↔ (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On)))) |
6 | limeq 6383 | . . . . 5 ⊢ (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
7 | limeq 6383 | . . . . 5 ⊢ (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On))) | |
8 | limon 7840 | . . . . 5 ⊢ Lim On | |
9 | 6, 7, 8 | elimhyp 4595 | . . . 4 ⊢ Lim if(Lim 𝐴, 𝐴, On) |
10 | 9 | limensuci 9178 | . . 3 ⊢ (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On)) |
11 | 5, 10 | dedth 4588 | . 2 ⊢ (Lim 𝐴 → (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴)) |
12 | 11 | impcom 406 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ifcif 4530 class class class wbr 5149 Oncon0 6371 Lim wlim 6372 suc csuc 6373 ≈ cen 8961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-er 8725 df-en 8965 df-dom 8966 |
This theorem is referenced by: infensuc 9180 |
Copyright terms: Public domain | W3C validator |