![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmpocl1 | Structured version Visualization version GIF version |
Description: If a two-parameter class is not empty, the first argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
elmpocl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
elmpocl1 | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmpocl.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | elmpocl 7681 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
3 | 2 | simpld 494 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ∈ cmpo 7440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-xp 5699 df-dm 5703 df-iota 6522 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 |
This theorem is referenced by: iccssico2 13467 mhmrcl1 18822 rhmrcl1 20502 cncfrss 24942 2clwwlk2clwwlklem 30391 lbioc 45495 |
Copyright terms: Public domain | W3C validator |