MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmpocl1 Structured version   Visualization version   GIF version

Theorem elmpocl1 7490
Description: If a two-parameter class is not empty, the first argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpocl.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elmpocl1 (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem elmpocl1
StepHypRef Expression
1 elmpocl.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21elmpocl 7489 . 2 (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
32simpld 494 1 (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7255  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  iccssico2  13082  mhmrcl1  18348  rhmrcl1  19878  cncfrss  23960  2clwwlk2clwwlklem  28611  lbioc  42941
  Copyright terms: Public domain W3C validator