MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmpocl2 Structured version   Visualization version   GIF version

Theorem elmpocl2 7632
Description: If a two-parameter class is not empty, the second argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpocl.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elmpocl2 (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem elmpocl2
StepHypRef Expression
1 elmpocl.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21elmpocl 7630 . 2 (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
32simprd 495 1 (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7387  cmpo 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  iccssico2  13381  swrdcl  14610  pfxcl  14642  mhmrcl2  18715  rhmrcl2  20386  mpfrcl  21992  cncfrss2  24785  relowlpssretop  37352  upeu4  49185
  Copyright terms: Public domain W3C validator