MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmpocl2 Structured version   Visualization version   GIF version

Theorem elmpocl2 7504
Description: If a two-parameter class is not empty, the second argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpocl.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elmpocl2 (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem elmpocl2
StepHypRef Expression
1 elmpocl.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21elmpocl 7502 . 2 (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
32simprd 495 1 (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  (class class class)co 7268  cmpo 7270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-dm 5598  df-iota 6388  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273
This theorem is referenced by:  iccssico2  13135  swrdcl  14339  pfxcl  14371  mhmrcl2  18415  rhmrcl2  19945  mpfrcl  21276  cncfrss2  24036  relowlpssretop  35514
  Copyright terms: Public domain W3C validator