MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccssico2 Structured version   Visualization version   GIF version

Theorem iccssico2 13442
Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssico2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))

Proof of Theorem iccssico2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13373 . . . 4 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elmpocl1 7654 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐴 ∈ ℝ*)
32adantr 480 . 2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ*)
41elmpocl2 7655 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*)
54adantr 480 . 2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
61elixx3g 13380 . . . . 5 (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
76simprbi 496 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴𝐶𝐶 < 𝐵))
87simpld 494 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐴𝐶)
98adantr 480 . 2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
101elixx3g 13380 . . . . 5 (𝐷 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴𝐷𝐷 < 𝐵)))
1110simprbi 496 . . . 4 (𝐷 ∈ (𝐴[,)𝐵) → (𝐴𝐷𝐷 < 𝐵))
1211simprd 495 . . 3 (𝐷 ∈ (𝐴[,)𝐵) → 𝐷 < 𝐵)
1312adantl 481 . 2 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐷 < 𝐵)
14 iccssico 13440 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))
153, 5, 9, 13, 14syl22anc 838 1 ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  {crab 3420  wss 3931   class class class wbr 5124  (class class class)co 7410  *cxr 11273   < clt 11274  cle 11275  [,)cico 13369  [,]cicc 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-ico 13373  df-icc 13374
This theorem is referenced by:  icopnfhmeo  24897
  Copyright terms: Public domain W3C validator