| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccssico2 | Structured version Visualization version GIF version | ||
| Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| iccssico2 | ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13248 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | elmpocl1 7588 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐴 ∈ ℝ*) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ*) |
| 4 | 1 | elmpocl2 7589 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*) |
| 6 | 1 | elixx3g 13255 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 7 | 6 | simprbi 496 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐴 ≤ 𝐶) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) |
| 10 | 1 | elixx3g 13255 | . . . . 5 ⊢ (𝐷 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐴 ≤ 𝐷 ∧ 𝐷 < 𝐵))) |
| 11 | 10 | simprbi 496 | . . . 4 ⊢ (𝐷 ∈ (𝐴[,)𝐵) → (𝐴 ≤ 𝐷 ∧ 𝐷 < 𝐵)) |
| 12 | 11 | simprd 495 | . . 3 ⊢ (𝐷 ∈ (𝐴[,)𝐵) → 𝐷 < 𝐵) |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → 𝐷 < 𝐵) |
| 14 | iccssico 13315 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | |
| 15 | 3, 5, 9, 13, 14 | syl22anc 838 | 1 ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 class class class wbr 5091 (class class class)co 7346 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 [,)cico 13244 [,]cicc 13245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-ico 13248 df-icc 13249 |
| This theorem is referenced by: icopnfhmeo 24866 |
| Copyright terms: Public domain | W3C validator |