MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpod Structured version   Visualization version   GIF version

Theorem elovmpod 7590
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 7591 in deduction form. (Revised by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
elovmpod.o 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
elovmpod.x (𝜑𝑋𝐴)
elovmpod.y (𝜑𝑌𝐵)
elovmpod.d (𝜑𝐷𝑉)
elovmpod.c ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
Assertion
Ref Expression
elovmpod (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Distinct variable groups:   𝐷,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐸(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem elovmpod
StepHypRef Expression
1 elovmpod.o . . . 4 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
21a1i 11 . . 3 (𝜑𝑂 = (𝑎𝐴, 𝑏𝐵𝐶))
3 elovmpod.c . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
43adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝑋𝑏 = 𝑌)) → 𝐶 = 𝐷)
5 elovmpod.x . . 3 (𝜑𝑋𝐴)
6 elovmpod.y . . 3 (𝜑𝑌𝐵)
7 elovmpod.d . . 3 (𝜑𝐷𝑉)
82, 4, 5, 6, 7ovmpod 7498 . 2 (𝜑 → (𝑋𝑂𝑌) = 𝐷)
98eleq2d 2817 1 (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  isgrim  47981  isgrlim  48081
  Copyright terms: Public domain W3C validator