MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpod Structured version   Visualization version   GIF version

Theorem elovmpod 7684
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 7685 in deduction form. (Revised by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
elovmpod.o 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
elovmpod.x (𝜑𝑋𝐴)
elovmpod.y (𝜑𝑌𝐵)
elovmpod.d (𝜑𝐷𝑉)
elovmpod.c ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
Assertion
Ref Expression
elovmpod (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Distinct variable groups:   𝐷,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐸(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem elovmpod
StepHypRef Expression
1 elovmpod.o . . . 4 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
21a1i 11 . . 3 (𝜑𝑂 = (𝑎𝐴, 𝑏𝐵𝐶))
3 elovmpod.c . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
43adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝑋𝑏 = 𝑌)) → 𝐶 = 𝐷)
5 elovmpod.x . . 3 (𝜑𝑋𝐴)
6 elovmpod.y . . 3 (𝜑𝑌𝐵)
7 elovmpod.d . . 3 (𝜑𝐷𝑉)
82, 4, 5, 6, 7ovmpod 7592 . 2 (𝜑 → (𝑋𝑂𝑌) = 𝐷)
98eleq2d 2827 1 (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  (class class class)co 7438  cmpo 7440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443
This theorem is referenced by:  isgrim  47834  isgrlim  47915
  Copyright terms: Public domain W3C validator