| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovmpod | Structured version Visualization version GIF version | ||
| Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 7594 in deduction form. (Revised by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| elovmpod.o | ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
| elovmpod.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| elovmpod.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| elovmpod.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| elovmpod.c | ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| elovmpod | ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpod.o | . . . 4 ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)) |
| 3 | elovmpod.c | . . . 4 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝑋 ∧ 𝑏 = 𝑌)) → 𝐶 = 𝐷) |
| 5 | elovmpod.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | elovmpod.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | elovmpod.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 8 | 2, 4, 5, 6, 7 | ovmpod 7501 | . 2 ⊢ (𝜑 → (𝑋𝑂𝑌) = 𝐷) |
| 9 | 8 | eleq2d 2814 | 1 ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: isgrim 47876 isgrlim 47976 |
| Copyright terms: Public domain | W3C validator |