MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpod Structured version   Visualization version   GIF version

Theorem elovmpod 7696
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 7697 in deduction form. (Revised by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
elovmpod.o 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
elovmpod.x (𝜑𝑋𝐴)
elovmpod.y (𝜑𝑌𝐵)
elovmpod.d (𝜑𝐷𝑉)
elovmpod.c ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
Assertion
Ref Expression
elovmpod (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Distinct variable groups:   𝐷,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐸(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem elovmpod
StepHypRef Expression
1 elovmpod.o . . . 4 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
21a1i 11 . . 3 (𝜑𝑂 = (𝑎𝐴, 𝑏𝐵𝐶))
3 elovmpod.c . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
43adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝑋𝑏 = 𝑌)) → 𝐶 = 𝐷)
5 elovmpod.x . . 3 (𝜑𝑋𝐴)
6 elovmpod.y . . 3 (𝜑𝑌𝐵)
7 elovmpod.d . . 3 (𝜑𝐷𝑉)
82, 4, 5, 6, 7ovmpod 7604 . 2 (𝜑 → (𝑋𝑂𝑌) = 𝐷)
98eleq2d 2830 1 (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  (class class class)co 7450  cmpo 7452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455
This theorem is referenced by:  isgrim  47754  isgrlim  47808
  Copyright terms: Public domain W3C validator