| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovmpod | Structured version Visualization version GIF version | ||
| Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 7641 in deduction form. (Revised by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| elovmpod.o | ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
| elovmpod.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| elovmpod.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| elovmpod.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| elovmpod.c | ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| elovmpod | ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpod.o | . . . 4 ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)) |
| 3 | elovmpod.c | . . . 4 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝑋 ∧ 𝑏 = 𝑌)) → 𝐶 = 𝐷) |
| 5 | elovmpod.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | elovmpod.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | elovmpod.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 8 | 2, 4, 5, 6, 7 | ovmpod 7548 | . 2 ⊢ (𝜑 → (𝑋𝑂𝑌) = 𝐷) |
| 9 | 8 | eleq2d 2815 | 1 ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7394 ∈ cmpo 7396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 |
| This theorem is referenced by: isgrim 47837 isgrlim 47936 |
| Copyright terms: Public domain | W3C validator |