| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovmpod | Structured version Visualization version GIF version | ||
| Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 7659 in deduction form. (Revised by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| elovmpod.o | ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
| elovmpod.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| elovmpod.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| elovmpod.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| elovmpod.c | ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| elovmpod | ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpod.o | . . . 4 ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)) |
| 3 | elovmpod.c | . . . 4 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝑋 ∧ 𝑏 = 𝑌)) → 𝐶 = 𝐷) |
| 5 | elovmpod.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | elovmpod.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | elovmpod.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 8 | 2, 4, 5, 6, 7 | ovmpod 7566 | . 2 ⊢ (𝜑 → (𝑋𝑂𝑌) = 𝐷) |
| 9 | 8 | eleq2d 2819 | 1 ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7412 ∈ cmpo 7414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 |
| This theorem is referenced by: isgrim 47802 isgrlim 47883 |
| Copyright terms: Public domain | W3C validator |