MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpod Structured version   Visualization version   GIF version

Theorem elovmpod 7613
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 7614 in deduction form. (Revised by AV, 20-Apr-2025.)
Hypotheses
Ref Expression
elovmpod.o 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
elovmpod.x (𝜑𝑋𝐴)
elovmpod.y (𝜑𝑌𝐵)
elovmpod.d (𝜑𝐷𝑉)
elovmpod.c ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
Assertion
Ref Expression
elovmpod (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Distinct variable groups:   𝐷,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝐸(𝑎,𝑏)   𝑂(𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem elovmpod
StepHypRef Expression
1 elovmpod.o . . . 4 𝑂 = (𝑎𝐴, 𝑏𝐵𝐶)
21a1i 11 . . 3 (𝜑𝑂 = (𝑎𝐴, 𝑏𝐵𝐶))
3 elovmpod.c . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → 𝐶 = 𝐷)
43adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝑋𝑏 = 𝑌)) → 𝐶 = 𝐷)
5 elovmpod.x . . 3 (𝜑𝑋𝐴)
6 elovmpod.y . . 3 (𝜑𝑌𝐵)
7 elovmpod.d . . 3 (𝜑𝐷𝑉)
82, 4, 5, 6, 7ovmpod 7521 . 2 (𝜑 → (𝑋𝑂𝑌) = 𝐷)
98eleq2d 2814 1 (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7369  cmpo 7371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374
This theorem is referenced by:  isgrim  47855  isgrlim  47954
  Copyright terms: Public domain W3C validator