![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elovmpod | Structured version Visualization version GIF version |
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 7685 in deduction form. (Revised by AV, 20-Apr-2025.) |
Ref | Expression |
---|---|
elovmpod.o | ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
elovmpod.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
elovmpod.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
elovmpod.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
elovmpod.c | ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
elovmpod | ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpod.o | . . . 4 ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)) |
3 | elovmpod.c | . . . 4 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝑋 ∧ 𝑏 = 𝑌)) → 𝐶 = 𝐷) |
5 | elovmpod.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
6 | elovmpod.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | elovmpod.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
8 | 2, 4, 5, 6, 7 | ovmpod 7592 | . 2 ⊢ (𝜑 → (𝑋𝑂𝑌) = 𝐷) |
9 | 8 | eleq2d 2827 | 1 ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ∈ cmpo 7440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 |
This theorem is referenced by: isgrim 47834 isgrlim 47915 |
Copyright terms: Public domain | W3C validator |