Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpod | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
ovmpod.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
ovmpod.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
ovmpod.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ovmpod.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
ovmpod.5 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
Ref | Expression |
---|---|
ovmpod | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpod.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
2 | ovmpod.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
3 | eqidd 2739 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐷) | |
4 | ovmpod.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
5 | ovmpod.4 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
6 | ovmpod.5 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
7 | 1, 2, 3, 4, 5, 6 | ovmpodx 7402 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Copyright terms: Public domain | W3C validator |