Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predfz | Structured version Visualization version GIF version |
Description: Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
predfz | ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13361 | . . . . . 6 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
2 | elfzelz 13361 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
3 | zltlem1 12478 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ 𝑥 ≤ (𝐾 − 1))) | |
4 | 1, 2, 3 | syl2anr 598 | . . . . 5 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾 ↔ 𝑥 ≤ (𝐾 − 1))) |
5 | elfzuz 13357 | . . . . . 6 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
6 | peano2zm 12468 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ) | |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ) |
8 | elfz5 13353 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ≥‘𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1))) | |
9 | 5, 7, 8 | syl2anr 598 | . . . . 5 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1))) |
10 | 4, 9 | bitr4d 282 | . . . 4 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾 ↔ 𝑥 ∈ (𝑀...(𝐾 − 1)))) |
11 | 10 | pm5.32da 580 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))))) |
12 | vex 3446 | . . . 4 ⊢ 𝑥 ∈ V | |
13 | 12 | elpred 6259 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾))) |
14 | elfzuz3 13358 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
15 | 2 | zcnd 12532 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ) |
16 | ax-1cn 11034 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
17 | npcan 11335 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾) | |
18 | 15, 16, 17 | sylancl 587 | . . . . . . . . 9 ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾) |
19 | 18 | fveq2d 6833 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → (ℤ≥‘((𝐾 − 1) + 1)) = (ℤ≥‘𝐾)) |
20 | 14, 19 | eleqtrrd 2841 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) |
21 | peano2uzr 12748 | . . . . . . 7 ⊢ (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) | |
22 | 7, 20, 21 | syl2anc 585 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) |
23 | fzss2 13401 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) | |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) |
25 | 24 | sseld 3934 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (𝑀...𝑁))) |
26 | 25 | pm4.71rd 564 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))))) |
27 | 11, 13, 26 | 3bitr4d 311 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ 𝑥 ∈ (𝑀...(𝐾 − 1)))) |
28 | 27 | eqrdv 2735 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ⊆ wss 3901 class class class wbr 5096 Predcpred 6241 ‘cfv 6483 (class class class)co 7341 ℂcc 10974 1c1 10977 + caddc 10979 < clt 11114 ≤ cle 11115 − cmin 11310 ℤcz 12424 ℤ≥cuz 12687 ...cfz 13344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-n0 12339 df-z 12425 df-uz 12688 df-fz 13345 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |