Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predfz | Structured version Visualization version GIF version |
Description: Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
predfz | ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13112 | . . . . . 6 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
2 | elfzelz 13112 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
3 | zltlem1 12230 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ 𝑥 ≤ (𝐾 − 1))) | |
4 | 1, 2, 3 | syl2anr 600 | . . . . 5 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾 ↔ 𝑥 ≤ (𝐾 − 1))) |
5 | elfzuz 13108 | . . . . . 6 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
6 | peano2zm 12220 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ) | |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ) |
8 | elfz5 13104 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ≥‘𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1))) | |
9 | 5, 7, 8 | syl2anr 600 | . . . . 5 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1))) |
10 | 4, 9 | bitr4d 285 | . . . 4 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾 ↔ 𝑥 ∈ (𝑀...(𝐾 − 1)))) |
11 | 10 | pm5.32da 582 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))))) |
12 | vex 3412 | . . . 4 ⊢ 𝑥 ∈ V | |
13 | 12 | elpred 6176 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾))) |
14 | elfzuz3 13109 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
15 | 2 | zcnd 12283 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ) |
16 | ax-1cn 10787 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
17 | npcan 11087 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾) | |
18 | 15, 16, 17 | sylancl 589 | . . . . . . . . 9 ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾) |
19 | 18 | fveq2d 6721 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → (ℤ≥‘((𝐾 − 1) + 1)) = (ℤ≥‘𝐾)) |
20 | 14, 19 | eleqtrrd 2841 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) |
21 | peano2uzr 12499 | . . . . . . 7 ⊢ (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) | |
22 | 7, 20, 21 | syl2anc 587 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) |
23 | fzss2 13152 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) | |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) |
25 | 24 | sseld 3900 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (𝑀...𝑁))) |
26 | 25 | pm4.71rd 566 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))))) |
27 | 11, 13, 26 | 3bitr4d 314 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ 𝑥 ∈ (𝑀...(𝐾 − 1)))) |
28 | 27 | eqrdv 2735 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 class class class wbr 5053 Predcpred 6159 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 1c1 10730 + caddc 10732 < clt 10867 ≤ cle 10868 − cmin 11062 ℤcz 12176 ℤ≥cuz 12438 ...cfz 13095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |