MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predfz Structured version   Visualization version   GIF version

Theorem predfz 13560
Description: Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
predfz (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1)))

Proof of Theorem predfz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13431 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
2 elfzelz 13431 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
3 zltlem1 12535 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾𝑥 ≤ (𝐾 − 1)))
41, 2, 3syl2anr 597 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾𝑥 ≤ (𝐾 − 1)))
5 elfzuz 13427 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
6 peano2zm 12525 . . . . . . 7 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
72, 6syl 17 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ)
8 elfz5 13423 . . . . . 6 ((𝑥 ∈ (ℤ𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
95, 7, 8syl2anr 597 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
104, 9bitr4d 282 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾𝑥 ∈ (𝑀...(𝐾 − 1))))
1110pm5.32da 579 . . 3 (𝐾 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1)))))
12 vex 3441 . . . 4 𝑥 ∈ V
1312elpred 6273 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾)))
14 elfzuz3 13428 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
152zcnd 12588 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ)
16 ax-1cn 11075 . . . . . . . . . 10 1 ∈ ℂ
17 npcan 11380 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
1815, 16, 17sylancl 586 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾)
1918fveq2d 6835 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
2014, 19eleqtrrd 2836 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
21 peano2uzr 12807 . . . . . . 7 (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
227, 20, 21syl2anc 584 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
23 fzss2 13471 . . . . . 6 (𝑁 ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
2422, 23syl 17 . . . . 5 (𝐾 ∈ (𝑀...𝑁) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
2524sseld 3929 . . . 4 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (𝑀...𝑁)))
2625pm4.71rd 562 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1)))))
2711, 13, 263bitr4d 311 . 2 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ 𝑥 ∈ (𝑀...(𝐾 − 1))))
2827eqrdv 2731 1 (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898   class class class wbr 5095  Predcpred 6255  cfv 6489  (class class class)co 7355  cc 11015  1c1 11018   + caddc 11020   < clt 11157  cle 11158  cmin 11355  cz 12479  cuz 12742  ...cfz 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator