MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predfz Structured version   Visualization version   GIF version

Theorem predfz 13548
Description: Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
predfz (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1)))

Proof of Theorem predfz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13419 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
2 elfzelz 13419 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
3 zltlem1 12520 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾𝑥 ≤ (𝐾 − 1)))
41, 2, 3syl2anr 597 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾𝑥 ≤ (𝐾 − 1)))
5 elfzuz 13415 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
6 peano2zm 12510 . . . . . . 7 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
72, 6syl 17 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ)
8 elfz5 13411 . . . . . 6 ((𝑥 ∈ (ℤ𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
95, 7, 8syl2anr 597 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
104, 9bitr4d 282 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾𝑥 ∈ (𝑀...(𝐾 − 1))))
1110pm5.32da 579 . . 3 (𝐾 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1)))))
12 vex 3440 . . . 4 𝑥 ∈ V
1312elpred 6260 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾)))
14 elfzuz3 13416 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
152zcnd 12573 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ)
16 ax-1cn 11059 . . . . . . . . . 10 1 ∈ ℂ
17 npcan 11364 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
1815, 16, 17sylancl 586 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾)
1918fveq2d 6821 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
2014, 19eleqtrrd 2834 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
21 peano2uzr 12796 . . . . . . 7 (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
227, 20, 21syl2anc 584 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
23 fzss2 13459 . . . . . 6 (𝑁 ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
2422, 23syl 17 . . . . 5 (𝐾 ∈ (𝑀...𝑁) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
2524sseld 3928 . . . 4 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (𝑀...𝑁)))
2625pm4.71rd 562 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1)))))
2711, 13, 263bitr4d 311 . 2 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ 𝑥 ∈ (𝑀...(𝐾 − 1))))
2827eqrdv 2729 1 (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897   class class class wbr 5086  Predcpred 6242  cfv 6476  (class class class)co 7341  cc 10999  1c1 11002   + caddc 11004   < clt 11141  cle 11142  cmin 11339  cz 12463  cuz 12727  ...cfz 13402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator