![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predfz | Structured version Visualization version GIF version |
Description: Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
predfz | ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13441 | . . . . . 6 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
2 | elfzelz 13441 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
3 | zltlem1 12556 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ 𝑥 ≤ (𝐾 − 1))) | |
4 | 1, 2, 3 | syl2anr 597 | . . . . 5 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾 ↔ 𝑥 ≤ (𝐾 − 1))) |
5 | elfzuz 13437 | . . . . . 6 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
6 | peano2zm 12546 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ) | |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ) |
8 | elfz5 13433 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ≥‘𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1))) | |
9 | 5, 7, 8 | syl2anr 597 | . . . . 5 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1))) |
10 | 4, 9 | bitr4d 281 | . . . 4 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾 ↔ 𝑥 ∈ (𝑀...(𝐾 − 1)))) |
11 | 10 | pm5.32da 579 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))))) |
12 | vex 3449 | . . . 4 ⊢ 𝑥 ∈ V | |
13 | 12 | elpred 6270 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾))) |
14 | elfzuz3 13438 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
15 | 2 | zcnd 12608 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ) |
16 | ax-1cn 11109 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
17 | npcan 11410 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾) | |
18 | 15, 16, 17 | sylancl 586 | . . . . . . . . 9 ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾) |
19 | 18 | fveq2d 6846 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → (ℤ≥‘((𝐾 − 1) + 1)) = (ℤ≥‘𝐾)) |
20 | 14, 19 | eleqtrrd 2841 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) |
21 | peano2uzr 12828 | . . . . . . 7 ⊢ (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) | |
22 | 7, 20, 21 | syl2anc 584 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) |
23 | fzss2 13481 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) | |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) |
25 | 24 | sseld 3943 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (𝑀...𝑁))) |
26 | 25 | pm4.71rd 563 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))))) |
27 | 11, 13, 26 | 3bitr4d 310 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ 𝑥 ∈ (𝑀...(𝐾 − 1)))) |
28 | 27 | eqrdv 2734 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3910 class class class wbr 5105 Predcpred 6252 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 1c1 11052 + caddc 11054 < clt 11189 ≤ cle 11190 − cmin 11385 ℤcz 12499 ℤ≥cuz 12763 ...cfz 13424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |