| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predfz | Structured version Visualization version GIF version | ||
| Description: Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| Ref | Expression |
|---|---|
| predfz | ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 13431 | . . . . . 6 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 2 | elfzelz 13431 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
| 3 | zltlem1 12535 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾 ↔ 𝑥 ≤ (𝐾 − 1))) | |
| 4 | 1, 2, 3 | syl2anr 597 | . . . . 5 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾 ↔ 𝑥 ≤ (𝐾 − 1))) |
| 5 | elfzuz 13427 | . . . . . 6 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
| 6 | peano2zm 12525 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ) | |
| 7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ) |
| 8 | elfz5 13423 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ≥‘𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1))) | |
| 9 | 5, 7, 8 | syl2anr 597 | . . . . 5 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1))) |
| 10 | 4, 9 | bitr4d 282 | . . . 4 ⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾 ↔ 𝑥 ∈ (𝑀...(𝐾 − 1)))) |
| 11 | 10 | pm5.32da 579 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))))) |
| 12 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
| 13 | 12 | elpred 6273 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾))) |
| 14 | elfzuz3 13428 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 15 | 2 | zcnd 12588 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ) |
| 16 | ax-1cn 11075 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 17 | npcan 11380 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾) | |
| 18 | 15, 16, 17 | sylancl 586 | . . . . . . . . 9 ⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾) |
| 19 | 18 | fveq2d 6835 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → (ℤ≥‘((𝐾 − 1) + 1)) = (ℤ≥‘𝐾)) |
| 20 | 14, 19 | eleqtrrd 2836 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) |
| 21 | peano2uzr 12807 | . . . . . . 7 ⊢ (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) | |
| 22 | 7, 20, 21 | syl2anc 584 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) |
| 23 | fzss2 13471 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) | |
| 24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁)) |
| 25 | 24 | sseld 3929 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (𝑀...𝑁))) |
| 26 | 25 | pm4.71rd 562 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))))) |
| 27 | 11, 13, 26 | 3bitr4d 311 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ 𝑥 ∈ (𝑀...(𝐾 − 1)))) |
| 28 | 27 | eqrdv 2731 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5095 Predcpred 6255 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 1c1 11018 + caddc 11020 < clt 11157 ≤ cle 11158 − cmin 11355 ℤcz 12479 ℤ≥cuz 12742 ...cfz 13414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |