MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predfz Structured version   Visualization version   GIF version

Theorem predfz 13659
Description: Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
predfz (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1)))

Proof of Theorem predfz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13530 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
2 elfzelz 13530 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
3 zltlem1 12637 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 < 𝐾𝑥 ≤ (𝐾 − 1)))
41, 2, 3syl2anr 597 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾𝑥 ≤ (𝐾 − 1)))
5 elfzuz 13526 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
6 peano2zm 12627 . . . . . . 7 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
72, 6syl 17 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 1) ∈ ℤ)
8 elfz5 13522 . . . . . 6 ((𝑥 ∈ (ℤ𝑀) ∧ (𝐾 − 1) ∈ ℤ) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
95, 7, 8syl2anr 597 . . . . 5 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ 𝑥 ≤ (𝐾 − 1)))
104, 9bitr4d 282 . . . 4 ((𝐾 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 < 𝐾𝑥 ∈ (𝑀...(𝐾 − 1))))
1110pm5.32da 579 . . 3 (𝐾 ∈ (𝑀...𝑁) → ((𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1)))))
12 vex 3461 . . . 4 𝑥 ∈ V
1312elpred 6304 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 < 𝐾)))
14 elfzuz3 13527 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
152zcnd 12690 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℂ)
16 ax-1cn 11179 . . . . . . . . . 10 1 ∈ ℂ
17 npcan 11483 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
1815, 16, 17sylancl 586 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 − 1) + 1) = 𝐾)
1918fveq2d 6876 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
2014, 19eleqtrrd 2836 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
21 peano2uzr 12911 . . . . . . 7 (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
227, 20, 21syl2anc 584 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
23 fzss2 13570 . . . . . 6 (𝑁 ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
2422, 23syl 17 . . . . 5 (𝐾 ∈ (𝑀...𝑁) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
2524sseld 3955 . . . 4 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) → 𝑥 ∈ (𝑀...𝑁)))
2625pm4.71rd 562 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝑀...(𝐾 − 1)) ↔ (𝑥 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1)))))
2711, 13, 263bitr4d 311 . 2 (𝐾 ∈ (𝑀...𝑁) → (𝑥 ∈ Pred( < , (𝑀...𝑁), 𝐾) ↔ 𝑥 ∈ (𝑀...(𝐾 − 1))))
2827eqrdv 2732 1 (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wss 3924   class class class wbr 5116  Predcpred 6286  cfv 6527  (class class class)co 7399  cc 11119  1c1 11122   + caddc 11124   < clt 11261  cle 11262  cmin 11458  cz 12580  cuz 12844  ...cfz 13513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-n0 12494  df-z 12581  df-uz 12845  df-fz 13514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator