MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preduz Structured version   Visualization version   GIF version

Theorem preduz 13024
Description: The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
preduz (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))

Proof of Theorem preduz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3472 . . . . . 6 𝑥 ∈ V
21elpred 6139 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁)))
3 eluzelz 12241 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
4 eluzelz 12241 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
5 zltlem1 12023 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
63, 4, 5syl2anr 599 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
76pm5.32da 582 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1))))
8 eluzel2 12236 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 eluz1 12235 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
1110anbi1d 632 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
127, 11bitrd 282 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
132, 12bitrd 282 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
14 peano2zm 12013 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
154, 14syl 17 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
168, 15jca 515 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
1716biantrurd 536 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
1813, 17bitrd 282 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
19 elfz2 12892 . . . 4 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
20 df-3an 1086 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ))
2120anbi1i 626 . . . 4 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
22 anass 472 . . . . 5 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
23 anass 472 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
2423anbi2i 625 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
2522, 24bitr4i 281 . . . 4 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2619, 21, 253bitri 300 . . 3 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2718, 26syl6bbr 292 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))
2827eqrdv 2820 1 (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114   class class class wbr 5042  Predcpred 6125  cfv 6334  (class class class)co 7140  1c1 10527   < clt 10664  cle 10665  cmin 10859  cz 11969  cuz 12231  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  prednn  13025  prednn0  13026  uzsinds  13350
  Copyright terms: Public domain W3C validator