MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preduz Structured version   Visualization version   GIF version

Theorem preduz 13690
Description: The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
preduz (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))

Proof of Theorem preduz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3484 . . . . . 6 𝑥 ∈ V
21elpred 6338 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁)))
3 eluzelz 12888 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
4 eluzelz 12888 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
5 zltlem1 12670 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
63, 4, 5syl2anr 597 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
76pm5.32da 579 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1))))
8 eluzel2 12883 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 eluz1 12882 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
1110anbi1d 631 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
127, 11bitrd 279 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
132, 12bitrd 279 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
14 peano2zm 12660 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
154, 14syl 17 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
168, 15jca 511 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
1716biantrurd 532 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
1813, 17bitrd 279 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
19 elfz2 13554 . . . 4 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
20 df-3an 1089 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ))
2120anbi1i 624 . . . 4 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
22 anass 468 . . . . 5 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
23 anass 468 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
2423anbi2i 623 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
2522, 24bitr4i 278 . . . 4 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2619, 21, 253bitri 297 . . 3 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2718, 26bitr4di 289 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))
2827eqrdv 2735 1 (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  Predcpred 6320  cfv 6561  (class class class)co 7431  1c1 11156   < clt 11295  cle 11296  cmin 11492  cz 12613  cuz 12878  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  prednn  13691  prednn0  13692  uzsinds  14028
  Copyright terms: Public domain W3C validator