MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preduz Structured version   Visualization version   GIF version

Theorem preduz 13564
Description: The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
preduz (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))

Proof of Theorem preduz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3450 . . . . . 6 𝑥 ∈ V
21elpred 6271 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁)))
3 eluzelz 12774 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
4 eluzelz 12774 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
5 zltlem1 12557 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
63, 4, 5syl2anr 598 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
76pm5.32da 580 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1))))
8 eluzel2 12769 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 eluz1 12768 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
1110anbi1d 631 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
127, 11bitrd 279 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
132, 12bitrd 279 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
14 peano2zm 12547 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
154, 14syl 17 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
168, 15jca 513 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
1716biantrurd 534 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
1813, 17bitrd 279 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
19 elfz2 13432 . . . 4 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
20 df-3an 1090 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ))
2120anbi1i 625 . . . 4 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
22 anass 470 . . . . 5 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
23 anass 470 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
2423anbi2i 624 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
2522, 24bitr4i 278 . . . 4 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2619, 21, 253bitri 297 . . 3 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2718, 26bitr4di 289 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))
2827eqrdv 2735 1 (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5106  Predcpred 6253  cfv 6497  (class class class)co 7358  1c1 11053   < clt 11190  cle 11191  cmin 11386  cz 12500  cuz 12764  ...cfz 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-n0 12415  df-z 12501  df-uz 12765  df-fz 13426
This theorem is referenced by:  prednn  13565  prednn0  13566  uzsinds  13893
  Copyright terms: Public domain W3C validator