![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0z | Structured version Visualization version GIF version |
Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0z.1 | ⊢ Ⅎ𝑘𝜑 |
sge0z.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
sge0z | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0z.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0z.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
3 | 0e0icopnf 13439 | . . . . 5 ⊢ 0 ∈ (0[,)+∞) | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
5 | 2, 4 | fmptd2f 44235 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 0):𝐴⟶(0[,)+∞)) |
6 | 1, 5 | sge0reval 45386 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)), ℝ*, < )) |
7 | eqidd 2731 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → (𝑘 ∈ 𝐴 ↦ 0) = (𝑘 ∈ 𝐴 ↦ 0)) | |
8 | eqidd 2731 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) ∧ 𝑘 = 𝑦) → 0 = 0) | |
9 | elpwinss 44037 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | |
10 | 9 | sselda 3981 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
11 | 0cnd 11211 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 0 ∈ ℂ) | |
12 | 7, 8, 10, 11 | fvmptd 7004 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
13 | 12 | adantll 710 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
14 | 13 | sumeq2dv 15653 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = Σ𝑦 ∈ 𝑥 0) |
15 | elinel2 4195 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) | |
16 | olc 864 | . . . . . . . . 9 ⊢ (𝑥 ∈ Fin → (𝑥 ⊆ (ℤ≥‘𝐵) ∨ 𝑥 ∈ Fin)) | |
17 | sumz 15672 | . . . . . . . . 9 ⊢ ((𝑥 ⊆ (ℤ≥‘𝐵) ∨ 𝑥 ∈ Fin) → Σ𝑦 ∈ 𝑥 0 = 0) | |
18 | 15, 16, 17 | 3syl 18 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦 ∈ 𝑥 0 = 0) |
19 | 18 | adantl 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 0 = 0) |
20 | 14, 19 | eqtrd 2770 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
21 | 20 | mpteq2dva 5247 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)) |
22 | 21 | rneqd 5936 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)) |
23 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
24 | pwfin0 44050 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ | |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝒫 𝐴 ∩ Fin) ≠ ∅) |
26 | 23, 25 | rnmptc 7209 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
27 | 22, 26 | eqtrd 2770 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = {0}) |
28 | 27 | supeq1d 9443 | . 2 ⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < )) |
29 | xrltso 13124 | . . . 4 ⊢ < Or ℝ* | |
30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ*) |
31 | 0xr 11265 | . . 3 ⊢ 0 ∈ ℝ* | |
32 | supsn 9469 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
33 | 30, 31, 32 | sylancl 584 | . 2 ⊢ (𝜑 → sup({0}, ℝ*, < ) = 0) |
34 | 6, 28, 33 | 3eqtrd 2774 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 843 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ≠ wne 2938 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 𝒫 cpw 4601 {csn 4627 ↦ cmpt 5230 Or wor 5586 ran crn 5676 ‘cfv 6542 (class class class)co 7411 Fincfn 8941 supcsup 9437 ℂcc 11110 0cc0 11112 +∞cpnf 11249 ℝ*cxr 11251 < clt 11252 ℤ≥cuz 12826 [,)cico 13330 Σcsu 15636 Σ^csumge0 45376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-sum 15637 df-sumge0 45377 |
This theorem is referenced by: sge0ss 45426 ismeannd 45481 0ome 45543 isomenndlem 45544 ovn0lem 45579 vonct 45707 |
Copyright terms: Public domain | W3C validator |