| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0z | Structured version Visualization version GIF version | ||
| Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0z.1 | ⊢ Ⅎ𝑘𝜑 |
| sge0z.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| sge0z | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0z.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0z.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 3 | 0e0icopnf 13360 | . . . . 5 ⊢ 0 ∈ (0[,)+∞) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
| 5 | 2, 4 | fmptd2f 45357 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 0):𝐴⟶(0[,)+∞)) |
| 6 | 1, 5 | sge0reval 46495 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)), ℝ*, < )) |
| 7 | eqidd 2734 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → (𝑘 ∈ 𝐴 ↦ 0) = (𝑘 ∈ 𝐴 ↦ 0)) | |
| 8 | eqidd 2734 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) ∧ 𝑘 = 𝑦) → 0 = 0) | |
| 9 | elpwinss 45171 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | |
| 10 | 9 | sselda 3930 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
| 11 | 0cnd 11112 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 0 ∈ ℂ) | |
| 12 | 7, 8, 10, 11 | fvmptd 6942 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
| 13 | 12 | adantll 714 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
| 14 | 13 | sumeq2dv 15611 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = Σ𝑦 ∈ 𝑥 0) |
| 15 | elinel2 4151 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) | |
| 16 | olc 868 | . . . . . . . . 9 ⊢ (𝑥 ∈ Fin → (𝑥 ⊆ (ℤ≥‘𝐵) ∨ 𝑥 ∈ Fin)) | |
| 17 | sumz 15631 | . . . . . . . . 9 ⊢ ((𝑥 ⊆ (ℤ≥‘𝐵) ∨ 𝑥 ∈ Fin) → Σ𝑦 ∈ 𝑥 0 = 0) | |
| 18 | 15, 16, 17 | 3syl 18 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦 ∈ 𝑥 0 = 0) |
| 19 | 18 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 0 = 0) |
| 20 | 14, 19 | eqtrd 2768 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
| 21 | 20 | mpteq2dva 5186 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)) |
| 22 | 21 | rneqd 5882 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)) |
| 23 | eqid 2733 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
| 24 | pwfin0 45184 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ | |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝒫 𝐴 ∩ Fin) ≠ ∅) |
| 26 | 23, 25 | rnmptc 7147 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
| 27 | 22, 26 | eqtrd 2768 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = {0}) |
| 28 | 27 | supeq1d 9337 | . 2 ⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < )) |
| 29 | xrltso 13042 | . . . 4 ⊢ < Or ℝ* | |
| 30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ*) |
| 31 | 0xr 11166 | . . 3 ⊢ 0 ∈ ℝ* | |
| 32 | supsn 9364 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 33 | 30, 31, 32 | sylancl 586 | . 2 ⊢ (𝜑 → sup({0}, ℝ*, < ) = 0) |
| 34 | 6, 28, 33 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ≠ wne 2929 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 {csn 4575 ↦ cmpt 5174 Or wor 5526 ran crn 5620 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 supcsup 9331 ℂcc 11011 0cc0 11013 +∞cpnf 11150 ℝ*cxr 11152 < clt 11153 ℤ≥cuz 12738 [,)cico 13249 Σcsu 15595 Σ^csumge0 46485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-sum 15596 df-sumge0 46486 |
| This theorem is referenced by: sge0ss 46535 ismeannd 46590 0ome 46652 isomenndlem 46653 ovn0lem 46688 vonct 46816 |
| Copyright terms: Public domain | W3C validator |