Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0z | Structured version Visualization version GIF version |
Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0z.1 | ⊢ Ⅎ𝑘𝜑 |
sge0z.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
sge0z | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0z.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0z.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
3 | 0e0icopnf 13236 | . . . . 5 ⊢ 0 ∈ (0[,)+∞) | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
5 | 2, 4 | fmptd2f 42823 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 0):𝐴⟶(0[,)+∞)) |
6 | 1, 5 | sge0reval 43960 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)), ℝ*, < )) |
7 | eqidd 2737 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → (𝑘 ∈ 𝐴 ↦ 0) = (𝑘 ∈ 𝐴 ↦ 0)) | |
8 | eqidd 2737 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) ∧ 𝑘 = 𝑦) → 0 = 0) | |
9 | elpwinss 42635 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | |
10 | 9 | sselda 3926 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
11 | 0cnd 11014 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 0 ∈ ℂ) | |
12 | 7, 8, 10, 11 | fvmptd 6914 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
13 | 12 | adantll 712 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
14 | 13 | sumeq2dv 15460 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = Σ𝑦 ∈ 𝑥 0) |
15 | elinel2 4136 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) | |
16 | olc 866 | . . . . . . . . 9 ⊢ (𝑥 ∈ Fin → (𝑥 ⊆ (ℤ≥‘𝐵) ∨ 𝑥 ∈ Fin)) | |
17 | sumz 15479 | . . . . . . . . 9 ⊢ ((𝑥 ⊆ (ℤ≥‘𝐵) ∨ 𝑥 ∈ Fin) → Σ𝑦 ∈ 𝑥 0 = 0) | |
18 | 15, 16, 17 | 3syl 18 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦 ∈ 𝑥 0 = 0) |
19 | 18 | adantl 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 0 = 0) |
20 | 14, 19 | eqtrd 2776 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
21 | 20 | mpteq2dva 5181 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)) |
22 | 21 | rneqd 5859 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)) |
23 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
24 | pwfin0 42648 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ | |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝒫 𝐴 ∩ Fin) ≠ ∅) |
26 | 23, 25 | rnmptc 7114 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
27 | 22, 26 | eqtrd 2776 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = {0}) |
28 | 27 | supeq1d 9249 | . 2 ⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < )) |
29 | xrltso 12921 | . . . 4 ⊢ < Or ℝ* | |
30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ*) |
31 | 0xr 11068 | . . 3 ⊢ 0 ∈ ℝ* | |
32 | supsn 9275 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
33 | 30, 31, 32 | sylancl 587 | . 2 ⊢ (𝜑 → sup({0}, ℝ*, < ) = 0) |
34 | 6, 28, 33 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 845 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ≠ wne 2941 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 {csn 4565 ↦ cmpt 5164 Or wor 5513 ran crn 5601 ‘cfv 6458 (class class class)co 7307 Fincfn 8764 supcsup 9243 ℂcc 10915 0cc0 10917 +∞cpnf 11052 ℝ*cxr 11054 < clt 11055 ℤ≥cuz 12628 [,)cico 13127 Σcsu 15442 Σ^csumge0 43950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-sum 15443 df-sumge0 43951 |
This theorem is referenced by: sge0ss 44000 ismeannd 44055 0ome 44117 isomenndlem 44118 ovn0lem 44153 vonct 44281 |
Copyright terms: Public domain | W3C validator |