![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0z | Structured version Visualization version GIF version |
Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0z.1 | ⊢ Ⅎ𝑘𝜑 |
sge0z.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
sge0z | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0z.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0z.1 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
3 | 0e0icopnf 13417 | . . . . 5 ⊢ 0 ∈ (0[,)+∞) | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
5 | 2, 4 | fmptd2f 43709 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 0):𝐴⟶(0[,)+∞)) |
6 | 1, 5 | sge0reval 44861 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)), ℝ*, < )) |
7 | eqidd 2732 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → (𝑘 ∈ 𝐴 ↦ 0) = (𝑘 ∈ 𝐴 ↦ 0)) | |
8 | eqidd 2732 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) ∧ 𝑘 = 𝑦) → 0 = 0) | |
9 | elpwinss 43507 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | |
10 | 9 | sselda 3978 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
11 | 0cnd 11189 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 0 ∈ ℂ) | |
12 | 7, 8, 10, 11 | fvmptd 6991 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
13 | 12 | adantll 712 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
14 | 13 | sumeq2dv 15631 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = Σ𝑦 ∈ 𝑥 0) |
15 | elinel2 4192 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) | |
16 | olc 866 | . . . . . . . . 9 ⊢ (𝑥 ∈ Fin → (𝑥 ⊆ (ℤ≥‘𝐵) ∨ 𝑥 ∈ Fin)) | |
17 | sumz 15650 | . . . . . . . . 9 ⊢ ((𝑥 ⊆ (ℤ≥‘𝐵) ∨ 𝑥 ∈ Fin) → Σ𝑦 ∈ 𝑥 0 = 0) | |
18 | 15, 16, 17 | 3syl 18 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦 ∈ 𝑥 0 = 0) |
19 | 18 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 0 = 0) |
20 | 14, 19 | eqtrd 2771 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦) = 0) |
21 | 20 | mpteq2dva 5241 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)) |
22 | 21 | rneqd 5929 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)) |
23 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
24 | pwfin0 43520 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ | |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝒫 𝐴 ∩ Fin) ≠ ∅) |
26 | 23, 25 | rnmptc 7192 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
27 | 22, 26 | eqtrd 2771 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)) = {0}) |
28 | 27 | supeq1d 9423 | . 2 ⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 ((𝑘 ∈ 𝐴 ↦ 0)‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < )) |
29 | xrltso 13102 | . . . 4 ⊢ < Or ℝ* | |
30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ*) |
31 | 0xr 11243 | . . 3 ⊢ 0 ∈ ℝ* | |
32 | supsn 9449 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
33 | 30, 31, 32 | sylancl 586 | . 2 ⊢ (𝜑 → sup({0}, ℝ*, < ) = 0) |
34 | 6, 28, 33 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ≠ wne 2939 ∩ cin 3943 ⊆ wss 3944 ∅c0 4318 𝒫 cpw 4596 {csn 4622 ↦ cmpt 5224 Or wor 5580 ran crn 5670 ‘cfv 6532 (class class class)co 7393 Fincfn 8922 supcsup 9417 ℂcc 11090 0cc0 11092 +∞cpnf 11227 ℝ*cxr 11229 < clt 11230 ℤ≥cuz 12804 [,)cico 13308 Σcsu 15614 Σ^csumge0 44851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-inf2 9618 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9419 df-oi 9487 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-n0 12455 df-z 12541 df-uz 12805 df-rp 12957 df-ico 13312 df-icc 13313 df-fz 13467 df-fzo 13610 df-seq 13949 df-exp 14010 df-hash 14273 df-cj 15028 df-re 15029 df-im 15030 df-sqrt 15164 df-abs 15165 df-clim 15414 df-sum 15615 df-sumge0 44852 |
This theorem is referenced by: sge0ss 44901 ismeannd 44956 0ome 45018 isomenndlem 45019 ovn0lem 45054 vonct 45182 |
Copyright terms: Public domain | W3C validator |