Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0z Structured version   Visualization version   GIF version

Theorem sge0z 43963
Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0z.1 𝑘𝜑
sge0z.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
sge0z (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑘)

Proof of Theorem sge0z
Dummy variables 𝑥 𝑦 𝐵 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0z.2 . . 3 (𝜑𝐴𝑉)
2 sge0z.1 . . . 4 𝑘𝜑
3 0e0icopnf 13236 . . . . 5 0 ∈ (0[,)+∞)
43a1i 11 . . . 4 ((𝜑𝑘𝐴) → 0 ∈ (0[,)+∞))
52, 4fmptd2f 42823 . . 3 (𝜑 → (𝑘𝐴 ↦ 0):𝐴⟶(0[,)+∞))
61, 5sge0reval 43960 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ))
7 eqidd 2737 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → (𝑘𝐴 ↦ 0) = (𝑘𝐴 ↦ 0))
8 eqidd 2737 . . . . . . . . . 10 (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) ∧ 𝑘 = 𝑦) → 0 = 0)
9 elpwinss 42635 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
109sselda 3926 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝐴)
11 0cnd 11014 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 0 ∈ ℂ)
127, 8, 10, 11fvmptd 6914 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1312adantll 712 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1413sumeq2dv 15460 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = Σ𝑦𝑥 0)
15 elinel2 4136 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
16 olc 866 . . . . . . . . 9 (𝑥 ∈ Fin → (𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin))
17 sumz 15479 . . . . . . . . 9 ((𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin) → Σ𝑦𝑥 0 = 0)
1815, 16, 173syl 18 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦𝑥 0 = 0)
1918adantl 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 0 = 0)
2014, 19eqtrd 2776 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
2120mpteq2dva 5181 . . . . 5 (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
2221rneqd 5859 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
23 eqid 2736 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
24 pwfin0 42648 . . . . . 6 (𝒫 𝐴 ∩ Fin) ≠ ∅
2524a1i 11 . . . . 5 (𝜑 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
2623, 25rnmptc 7114 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
2722, 26eqtrd 2776 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = {0})
2827supeq1d 9249 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < ))
29 xrltso 12921 . . . 4 < Or ℝ*
3029a1i 11 . . 3 (𝜑 → < Or ℝ*)
31 0xr 11068 . . 3 0 ∈ ℝ*
32 supsn 9275 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3330, 31, 32sylancl 587 . 2 (𝜑 → sup({0}, ℝ*, < ) = 0)
346, 28, 333eqtrd 2780 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845   = wceq 1539  wnf 1783  wcel 2104  wne 2941  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539  {csn 4565  cmpt 5164   Or wor 5513  ran crn 5601  cfv 6458  (class class class)co 7307  Fincfn 8764  supcsup 9243  cc 10915  0cc0 10917  +∞cpnf 11052  *cxr 11054   < clt 11055  cuz 12628  [,)cico 13127  Σcsu 15442  Σ^csumge0 43950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-ico 13131  df-icc 13132  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-clim 15242  df-sum 15443  df-sumge0 43951
This theorem is referenced by:  sge0ss  44000  ismeannd  44055  0ome  44117  isomenndlem  44118  ovn0lem  44153  vonct  44281
  Copyright terms: Public domain W3C validator