Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0z Structured version   Visualization version   GIF version

Theorem sge0z 42664
Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0z.1 𝑘𝜑
sge0z.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
sge0z (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑘)

Proof of Theorem sge0z
Dummy variables 𝑥 𝑦 𝐵 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0z.2 . . 3 (𝜑𝐴𝑉)
2 sge0z.1 . . . 4 𝑘𝜑
3 0e0icopnf 12849 . . . . 5 0 ∈ (0[,)+∞)
43a1i 11 . . . 4 ((𝜑𝑘𝐴) → 0 ∈ (0[,)+∞))
52, 4fmptd2f 41512 . . 3 (𝜑 → (𝑘𝐴 ↦ 0):𝐴⟶(0[,)+∞))
61, 5sge0reval 42661 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ))
7 eqidd 2824 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → (𝑘𝐴 ↦ 0) = (𝑘𝐴 ↦ 0))
8 eqidd 2824 . . . . . . . . . 10 (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) ∧ 𝑘 = 𝑦) → 0 = 0)
9 elpwinss 41318 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
109sselda 3969 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝐴)
11 0cnd 10636 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 0 ∈ ℂ)
127, 8, 10, 11fvmptd 6777 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1312adantll 712 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1413sumeq2dv 15062 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = Σ𝑦𝑥 0)
15 elinel2 4175 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
16 olc 864 . . . . . . . . 9 (𝑥 ∈ Fin → (𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin))
17 sumz 15081 . . . . . . . . 9 ((𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin) → Σ𝑦𝑥 0 = 0)
1815, 16, 173syl 18 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦𝑥 0 = 0)
1918adantl 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 0 = 0)
2014, 19eqtrd 2858 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
2120mpteq2dva 5163 . . . . 5 (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
2221rneqd 5810 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
23 eqid 2823 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
24 pwfin0 41331 . . . . . 6 (𝒫 𝐴 ∩ Fin) ≠ ∅
2524a1i 11 . . . . 5 (𝜑 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
2623, 25rnmptc 6971 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
2722, 26eqtrd 2858 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = {0})
2827supeq1d 8912 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < ))
29 xrltso 12537 . . . 4 < Or ℝ*
3029a1i 11 . . 3 (𝜑 → < Or ℝ*)
31 0xr 10690 . . 3 0 ∈ ℝ*
32 supsn 8938 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3330, 31, 32sylancl 588 . 2 (𝜑 → sup({0}, ℝ*, < ) = 0)
346, 28, 333eqtrd 2862 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wnf 1784  wcel 2114  wne 3018  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569  cmpt 5148   Or wor 5475  ran crn 5558  cfv 6357  (class class class)co 7158  Fincfn 8511  supcsup 8906  cc 10537  0cc0 10539  +∞cpnf 10674  *cxr 10676   < clt 10677  cuz 12246  [,)cico 12743  Σcsu 15044  Σ^csumge0 42651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-sumge0 42652
This theorem is referenced by:  sge0ss  42701  ismeannd  42756  0ome  42818  isomenndlem  42819  ovn0lem  42854  vonct  42982
  Copyright terms: Public domain W3C validator