Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0z Structured version   Visualization version   GIF version

Theorem sge0z 46498
Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0z.1 𝑘𝜑
sge0z.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
sge0z (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑘)

Proof of Theorem sge0z
Dummy variables 𝑥 𝑦 𝐵 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0z.2 . . 3 (𝜑𝐴𝑉)
2 sge0z.1 . . . 4 𝑘𝜑
3 0e0icopnf 13360 . . . . 5 0 ∈ (0[,)+∞)
43a1i 11 . . . 4 ((𝜑𝑘𝐴) → 0 ∈ (0[,)+∞))
52, 4fmptd2f 45357 . . 3 (𝜑 → (𝑘𝐴 ↦ 0):𝐴⟶(0[,)+∞))
61, 5sge0reval 46495 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ))
7 eqidd 2734 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → (𝑘𝐴 ↦ 0) = (𝑘𝐴 ↦ 0))
8 eqidd 2734 . . . . . . . . . 10 (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) ∧ 𝑘 = 𝑦) → 0 = 0)
9 elpwinss 45171 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
109sselda 3930 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝐴)
11 0cnd 11112 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 0 ∈ ℂ)
127, 8, 10, 11fvmptd 6942 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1312adantll 714 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1413sumeq2dv 15611 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = Σ𝑦𝑥 0)
15 elinel2 4151 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
16 olc 868 . . . . . . . . 9 (𝑥 ∈ Fin → (𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin))
17 sumz 15631 . . . . . . . . 9 ((𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin) → Σ𝑦𝑥 0 = 0)
1815, 16, 173syl 18 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦𝑥 0 = 0)
1918adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 0 = 0)
2014, 19eqtrd 2768 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
2120mpteq2dva 5186 . . . . 5 (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
2221rneqd 5882 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
23 eqid 2733 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
24 pwfin0 45184 . . . . . 6 (𝒫 𝐴 ∩ Fin) ≠ ∅
2524a1i 11 . . . . 5 (𝜑 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
2623, 25rnmptc 7147 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
2722, 26eqtrd 2768 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = {0})
2827supeq1d 9337 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < ))
29 xrltso 13042 . . . 4 < Or ℝ*
3029a1i 11 . . 3 (𝜑 → < Or ℝ*)
31 0xr 11166 . . 3 0 ∈ ℝ*
32 supsn 9364 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3330, 31, 32sylancl 586 . 2 (𝜑 → sup({0}, ℝ*, < ) = 0)
346, 28, 333eqtrd 2772 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wnf 1784  wcel 2113  wne 2929  cin 3897  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575  cmpt 5174   Or wor 5526  ran crn 5620  cfv 6486  (class class class)co 7352  Fincfn 8875  supcsup 9331  cc 11011  0cc0 11013  +∞cpnf 11150  *cxr 11152   < clt 11153  cuz 12738  [,)cico 13249  Σcsu 15595  Σ^csumge0 46485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-sumge0 46486
This theorem is referenced by:  sge0ss  46535  ismeannd  46590  0ome  46652  isomenndlem  46653  ovn0lem  46688  vonct  46816
  Copyright terms: Public domain W3C validator