Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0z Structured version   Visualization version   GIF version

Theorem sge0z 41323
Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0z.1 𝑘𝜑
sge0z.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
sge0z (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑘)

Proof of Theorem sge0z
Dummy variables 𝑥 𝑦 𝐵 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0z.2 . . 3 (𝜑𝐴𝑉)
2 sge0z.1 . . . 4 𝑘𝜑
3 0e0icopnf 12529 . . . . 5 0 ∈ (0[,)+∞)
43a1i 11 . . . 4 ((𝜑𝑘𝐴) → 0 ∈ (0[,)+∞))
5 eqid 2797 . . . 4 (𝑘𝐴 ↦ 0) = (𝑘𝐴 ↦ 0)
62, 4, 5fmptdf 6611 . . 3 (𝜑 → (𝑘𝐴 ↦ 0):𝐴⟶(0[,)+∞))
71, 6sge0reval 41320 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ))
8 eqidd 2798 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → (𝑘𝐴 ↦ 0) = (𝑘𝐴 ↦ 0))
9 eqid 2797 . . . . . . . . . . 11 0 = 0
109a1i 11 . . . . . . . . . 10 (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) ∧ 𝑘 = 𝑦) → 0 = 0)
11 elpwinss 39963 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1211adantr 473 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝐴)
13 simpr 478 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
1412, 13sseldd 3797 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝐴)
15 0cnd 10319 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 0 ∈ ℂ)
168, 10, 14, 15fvmptd 6511 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1716adantll 706 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1817sumeq2dv 14771 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = Σ𝑦𝑥 0)
19 elinel2 3996 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
20 olc 895 . . . . . . . . . 10 (𝑥 ∈ Fin → (𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin))
2119, 20syl 17 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → (𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin))
22 sumz 14791 . . . . . . . . 9 ((𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin) → Σ𝑦𝑥 0 = 0)
2321, 22syl 17 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦𝑥 0 = 0)
2423adantl 474 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 0 = 0)
2518, 24eqtrd 2831 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
2625mpteq2dva 4935 . . . . 5 (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
2726rneqd 5554 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
28 eqid 2797 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
29 0cnd 10319 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ ℂ)
30 pwfin0 39978 . . . . . 6 (𝒫 𝐴 ∩ Fin) ≠ ∅
3130a1i 11 . . . . 5 (𝜑 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
3228, 29, 31rnmptc 40096 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
3327, 32eqtrd 2831 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = {0})
3433supeq1d 8592 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < ))
35 xrltso 12217 . . . 4 < Or ℝ*
3635a1i 11 . . 3 (𝜑 → < Or ℝ*)
37 0xr 10373 . . . 4 0 ∈ ℝ*
3837a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
39 supsn 8618 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4036, 38, 39syl2anc 580 . 2 (𝜑 → sup({0}, ℝ*, < ) = 0)
417, 34, 403eqtrd 2835 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874   = wceq 1653  wnf 1879  wcel 2157  wne 2969  cin 3766  wss 3767  c0 4113  𝒫 cpw 4347  {csn 4366  cmpt 4920   Or wor 5230  ran crn 5311  cfv 6099  (class class class)co 6876  Fincfn 8193  supcsup 8586  cc 10220  0cc0 10222  +∞cpnf 10358  *cxr 10360   < clt 10361  cuz 11926  [,)cico 12422  Σcsu 14754  Σ^csumge0 41310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-sup 8588  df-oi 8655  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-n0 11577  df-z 11663  df-uz 11927  df-rp 12071  df-ico 12426  df-icc 12427  df-fz 12577  df-fzo 12717  df-seq 13052  df-exp 13111  df-hash 13367  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-clim 14557  df-sum 14755  df-sumge0 41311
This theorem is referenced by:  sge0ss  41360  ismeannd  41415  0ome  41477  isomenndlem  41478  ovn0lem  41513  vonct  41641
  Copyright terms: Public domain W3C validator