Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0z Structured version   Visualization version   GIF version

Theorem sge0z 41376
Description: Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0z.1 𝑘𝜑
sge0z.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
sge0z (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝑉(𝑘)

Proof of Theorem sge0z
Dummy variables 𝑥 𝑦 𝐵 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0z.2 . . 3 (𝜑𝐴𝑉)
2 sge0z.1 . . . 4 𝑘𝜑
3 0e0icopnf 12572 . . . . 5 0 ∈ (0[,)+∞)
43a1i 11 . . . 4 ((𝜑𝑘𝐴) → 0 ∈ (0[,)+∞))
5 eqid 2825 . . . 4 (𝑘𝐴 ↦ 0) = (𝑘𝐴 ↦ 0)
62, 4, 5fmptdf 6636 . . 3 (𝜑 → (𝑘𝐴 ↦ 0):𝐴⟶(0[,)+∞))
71, 6sge0reval 41373 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ))
8 eqidd 2826 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → (𝑘𝐴 ↦ 0) = (𝑘𝐴 ↦ 0))
9 eqid 2825 . . . . . . . . . . 11 0 = 0
109a1i 11 . . . . . . . . . 10 (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) ∧ 𝑘 = 𝑦) → 0 = 0)
11 elpwinss 40026 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1211adantr 474 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝐴)
13 simpr 479 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
1412, 13sseldd 3828 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝐴)
15 0cnd 10349 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → 0 ∈ ℂ)
168, 10, 14, 15fvmptd 6535 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1716adantll 705 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑦𝑥) → ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
1817sumeq2dv 14810 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = Σ𝑦𝑥 0)
19 elinel2 4027 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
20 olc 899 . . . . . . . . . 10 (𝑥 ∈ Fin → (𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin))
2119, 20syl 17 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → (𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin))
22 sumz 14830 . . . . . . . . 9 ((𝑥 ⊆ (ℤ𝐵) ∨ 𝑥 ∈ Fin) → Σ𝑦𝑥 0 = 0)
2321, 22syl 17 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦𝑥 0 = 0)
2423adantl 475 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 0 = 0)
2518, 24eqtrd 2861 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦) = 0)
2625mpteq2dva 4967 . . . . 5 (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
2726rneqd 5585 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0))
28 eqid 2825 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
29 0cnd 10349 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ ℂ)
30 pwfin0 40041 . . . . . 6 (𝒫 𝐴 ∩ Fin) ≠ ∅
3130a1i 11 . . . . 5 (𝜑 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
3228, 29, 31rnmptc 40155 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
3327, 32eqtrd 2861 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)) = {0})
3433supeq1d 8621 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝑘𝐴 ↦ 0)‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < ))
35 xrltso 12260 . . . 4 < Or ℝ*
3635a1i 11 . . 3 (𝜑 → < Or ℝ*)
37 0xr 10403 . . . 4 0 ∈ ℝ*
3837a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
39 supsn 8647 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4036, 38, 39syl2anc 579 . 2 (𝜑 → sup({0}, ℝ*, < ) = 0)
417, 34, 403eqtrd 2865 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ 0)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 878   = wceq 1656  wnf 1882  wcel 2164  wne 2999  cin 3797  wss 3798  c0 4144  𝒫 cpw 4378  {csn 4397  cmpt 4952   Or wor 5262  ran crn 5343  cfv 6123  (class class class)co 6905  Fincfn 8222  supcsup 8615  cc 10250  0cc0 10252  +∞cpnf 10388  *cxr 10390   < clt 10391  cuz 11968  [,)cico 12465  Σcsu 14793  Σ^csumge0 41363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-sumge0 41364
This theorem is referenced by:  sge0ss  41413  ismeannd  41468  0ome  41530  isomenndlem  41531  ovn0lem  41566  vonct  41694
  Copyright terms: Public domain W3C validator