Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ltfirpmpt | Structured version Visualization version GIF version |
Description: If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0ltfirpmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0ltfirpmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0ltfirpmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0ltfirpmpt.rp | ⊢ (𝜑 → 𝑌 ∈ ℝ+) |
sge0ltfirpmpt.re | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) |
Ref | Expression |
---|---|
sge0ltfirpmpt | ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0ltfirpmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0ltfirpmpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0ltfirpmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 7023 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0ltfirpmpt.rp | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ+) | |
7 | sge0ltfirpmpt.re | . . 3 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) | |
8 | 1, 5, 6, 7 | sge0ltfirp 43988 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) |
9 | simpr 486 | . . . . . 6 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) | |
10 | elpwinss 42635 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
11 | 10 | resmptd 5960 | . . . . . . . . 9 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦) = (𝑥 ∈ 𝑦 ↦ 𝐵)) |
12 | 11 | fveq2d 6808 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵))) |
13 | 12 | oveq1d 7322 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) = ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
14 | 13 | adantr 482 | . . . . . 6 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) = ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
15 | 9, 14 | breqtrd 5107 | . . . . 5 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
16 | 15 | ex 414 | . . . 4 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌))) |
17 | 16 | reximia 3081 | . . 3 ⊢ (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌))) |
19 | 8, 18 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ∃wrex 3071 ∩ cin 3891 𝒫 cpw 4539 class class class wbr 5081 ↦ cmpt 5164 ↾ cres 5602 ‘cfv 6458 (class class class)co 7307 Fincfn 8764 ℝcr 10916 0cc0 10917 + caddc 10920 +∞cpnf 11052 < clt 11055 ℝ+crp 12776 [,]cicc 13128 Σ^csumge0 43950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-sum 15443 df-sumge0 43951 |
This theorem is referenced by: sge0iunmptlemre 44003 omeiunltfirp 44107 |
Copyright terms: Public domain | W3C validator |