Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ltfirpmpt | Structured version Visualization version GIF version |
Description: If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0ltfirpmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0ltfirpmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0ltfirpmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0ltfirpmpt.rp | ⊢ (𝜑 → 𝑌 ∈ ℝ+) |
sge0ltfirpmpt.re | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) |
Ref | Expression |
---|---|
sge0ltfirpmpt | ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0ltfirpmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0ltfirpmpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0ltfirpmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2739 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 6985 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0ltfirpmpt.rp | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ+) | |
7 | sge0ltfirpmpt.re | . . 3 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) | |
8 | 1, 5, 6, 7 | sge0ltfirp 43892 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) |
9 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) | |
10 | elpwinss 42550 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
11 | 10 | resmptd 5945 | . . . . . . . . 9 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦) = (𝑥 ∈ 𝑦 ↦ 𝐵)) |
12 | 11 | fveq2d 6772 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵))) |
13 | 12 | oveq1d 7283 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) = ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) = ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
15 | 9, 14 | breqtrd 5104 | . . . . 5 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
16 | 15 | ex 412 | . . . 4 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌))) |
17 | 16 | reximia 3174 | . . 3 ⊢ (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌))) |
19 | 8, 18 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1789 ∈ wcel 2109 ∃wrex 3066 ∩ cin 3890 𝒫 cpw 4538 class class class wbr 5078 ↦ cmpt 5161 ↾ cres 5590 ‘cfv 6430 (class class class)co 7268 Fincfn 8707 ℝcr 10854 0cc0 10855 + caddc 10858 +∞cpnf 10990 < clt 10993 ℝ+crp 12712 [,]cicc 13064 Σ^csumge0 43854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-ico 13067 df-icc 13068 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-sum 15379 df-sumge0 43855 |
This theorem is referenced by: sge0iunmptlemre 43907 omeiunltfirp 44011 |
Copyright terms: Public domain | W3C validator |