| Mathbox for Glauco Siliprandi | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ltfirpmpt | Structured version Visualization version GIF version | ||
| Description: If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| sge0ltfirpmpt.xph | ⊢ Ⅎ𝑥𝜑 | 
| sge0ltfirpmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| sge0ltfirpmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | 
| sge0ltfirpmpt.rp | ⊢ (𝜑 → 𝑌 ∈ ℝ+) | 
| sge0ltfirpmpt.re | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) | 
| Ref | Expression | 
|---|---|
| sge0ltfirpmpt | ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sge0ltfirpmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0ltfirpmpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | sge0ltfirpmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7116 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) | 
| 6 | sge0ltfirpmpt.rp | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ+) | |
| 7 | sge0ltfirpmpt.re | . . 3 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) | |
| 8 | 1, 5, 6, 7 | sge0ltfirp 46348 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) | 
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) | |
| 10 | elpwinss 44987 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
| 11 | 10 | resmptd 6038 | . . . . . . . . 9 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦) = (𝑥 ∈ 𝑦 ↦ 𝐵)) | 
| 12 | 11 | fveq2d 6889 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵))) | 
| 13 | 12 | oveq1d 7427 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) = ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) | 
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) = ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) | 
| 15 | 9, 14 | breqtrd 5149 | . . . . 5 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) | 
| 16 | 15 | ex 412 | . . . 4 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌))) | 
| 17 | 16 | reximia 3070 | . . 3 ⊢ (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) | 
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌))) | 
| 19 | 8, 18 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ∃wrex 3059 ∩ cin 3930 𝒫 cpw 4580 class class class wbr 5123 ↦ cmpt 5205 ↾ cres 5667 ‘cfv 6540 (class class class)co 7412 Fincfn 8966 ℝcr 11135 0cc0 11136 + caddc 11139 +∞cpnf 11273 < clt 11276 ℝ+crp 13015 [,]cicc 13371 Σ^csumge0 46310 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-z 12596 df-uz 12860 df-rp 13016 df-ico 13374 df-icc 13375 df-fz 13529 df-fzo 13676 df-seq 14024 df-exp 14084 df-hash 14351 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-clim 15505 df-sum 15704 df-sumge0 46311 | 
| This theorem is referenced by: sge0iunmptlemre 46363 omeiunltfirp 46467 | 
| Copyright terms: Public domain | W3C validator |