Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ltfirpmpt | Structured version Visualization version GIF version |
Description: If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0ltfirpmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0ltfirpmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0ltfirpmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0ltfirpmpt.rp | ⊢ (𝜑 → 𝑌 ∈ ℝ+) |
sge0ltfirpmpt.re | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) |
Ref | Expression |
---|---|
sge0ltfirpmpt | ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0ltfirpmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0ltfirpmpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0ltfirpmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 7030 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0ltfirpmpt.rp | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ+) | |
7 | sge0ltfirpmpt.re | . . 3 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) | |
8 | 1, 5, 6, 7 | sge0ltfirp 44176 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) |
9 | simpr 485 | . . . . . 6 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) | |
10 | elpwinss 42818 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
11 | 10 | resmptd 5967 | . . . . . . . . 9 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦) = (𝑥 ∈ 𝑦 ↦ 𝐵)) |
12 | 11 | fveq2d 6815 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵))) |
13 | 12 | oveq1d 7330 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) = ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
14 | 13 | adantr 481 | . . . . . 6 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) = ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
15 | 9, 14 | breqtrd 5113 | . . . . 5 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
16 | 15 | ex 413 | . . . 4 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌))) |
17 | 16 | reximia 3081 | . . 3 ⊢ (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌))) |
19 | 8, 18 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ∃wrex 3071 ∩ cin 3896 𝒫 cpw 4545 class class class wbr 5087 ↦ cmpt 5170 ↾ cres 5609 ‘cfv 6465 (class class class)co 7315 Fincfn 8781 ℝcr 10943 0cc0 10944 + caddc 10947 +∞cpnf 11079 < clt 11082 ℝ+crp 12803 [,]cicc 13155 Σ^csumge0 44138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-sup 9271 df-oi 9339 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-z 12393 df-uz 12656 df-rp 12804 df-ico 13158 df-icc 13159 df-fz 13313 df-fzo 13456 df-seq 13795 df-exp 13856 df-hash 14118 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-clim 15269 df-sum 15470 df-sumge0 44139 |
This theorem is referenced by: sge0iunmptlemre 44191 omeiunltfirp 44295 |
Copyright terms: Public domain | W3C validator |