Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ltfirp Structured version   Visualization version   GIF version

Theorem sge0ltfirp 43828
Description: If the sum of nonnegative extended reals is real, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ltfirp.x (𝜑𝑋𝑉)
sge0ltfirp.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0ltfirp.y (𝜑𝑌 ∈ ℝ+)
sge0ltfirp.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0ltfirp (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0ltfirp
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0ltfirp.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
2 sge0ltfirp.x . . . . . 6 (𝜑𝑋𝑉)
3 sge0ltfirp.re . . . . . 6 (𝜑 → (Σ^𝐹) ∈ ℝ)
42, 1, 3sge0rern 43816 . . . . 5 (𝜑 → ¬ +∞ ∈ ran 𝐹)
51, 4fge0iccico 43798 . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
65sge0rnre 43792 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
7 sge0rnn0 43796 . . . 4 ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅
87a1i 11 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅)
92, 1, 3sge0rnbnd 43821 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
10 sge0ltfirp.y . . 3 (𝜑𝑌 ∈ ℝ+)
116, 8, 9, 10suprltrp 42757 . 2 (𝜑 → ∃𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤)
12 nfv 1918 . . 3 𝑤𝜑
13 nfv 1918 . . 3 𝑤𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)
14 simp1 1134 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → 𝜑)
15 vex 3426 . . . . . . . . . 10 𝑤 ∈ V
16 eqid 2738 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
1716elrnmpt 5854 . . . . . . . . . 10 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦)))
1815, 17ax-mp 5 . . . . . . . . 9 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
1918biimpi 215 . . . . . . . 8 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
2019adantr 480 . . . . . . 7 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
21 nfmpt1 5178 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
2221nfrn 5850 . . . . . . . . . . . 12 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
23 nfcv 2906 . . . . . . . . . . . 12 𝑥
24 nfcv 2906 . . . . . . . . . . . 12 𝑥 <
2522, 23, 24nfsup 9140 . . . . . . . . . . 11 𝑥sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < )
26 nfcv 2906 . . . . . . . . . . 11 𝑥
27 nfcv 2906 . . . . . . . . . . 11 𝑥𝑌
2825, 26, 27nfov 7285 . . . . . . . . . 10 𝑥(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌)
29 nfcv 2906 . . . . . . . . . 10 𝑥𝑤
3028, 24, 29nfbr 5117 . . . . . . . . 9 𝑥(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤
31 simpl 482 . . . . . . . . . . . 12 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤)
32 simpr 484 . . . . . . . . . . . 12 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 = Σ𝑦𝑥 (𝐹𝑦))
3331, 32breqtrd 5096 . . . . . . . . . . 11 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
3433ex 412 . . . . . . . . . 10 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3534a1d 25 . . . . . . . . 9 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))))
3630, 35reximdai 3239 . . . . . . . 8 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3736adantl 481 . . . . . . 7 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3820, 37mpd 15 . . . . . 6 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
39383adant1 1128 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
40 simpl 482 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)))
412, 1, 3sge0supre 43817 . . . . . . . . . . . . 13 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
4241oveq1d 7270 . . . . . . . . . . . 12 (𝜑 → ((Σ^𝐹) − 𝑌) = (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌))
4342adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) = (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌))
44 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
4543, 44eqbrtrd 5092 . . . . . . . . . 10 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
4645adantlr 711 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
47 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
483adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ∈ ℝ)
4910rpred 12701 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
5049adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑌 ∈ ℝ)
51 elinel2 4126 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
5251adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
53 rge0ssre 13117 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ ℝ
545adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞))
5554adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,)+∞))
56 elpwinss 42486 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
5756adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
5857sselda 3917 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
5955, 58ffvelrnd 6944 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
6053, 59sselid 3915 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
6152, 60fsumrecl 15374 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
6248, 50, 61ltsubaddd 11501 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) ↔ (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌)))
6362adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) ↔ (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌)))
6447, 63mpbid 231 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌))
6554, 57fssresd 6625 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,)+∞))
6652, 65sge0fsum 43815 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 ((𝐹𝑥)‘𝑦))
67 fvres 6775 . . . . . . . . . . . . . . 15 (𝑦𝑥 → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
6867sumeq2i 15339 . . . . . . . . . . . . . 14 Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦)
6968a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7066, 69eqtr2d 2779 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ^‘(𝐹𝑥)))
7170oveq1d 7270 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ𝑦𝑥 (𝐹𝑦) + 𝑌) = ((Σ^‘(𝐹𝑥)) + 𝑌))
7271adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ𝑦𝑥 (𝐹𝑦) + 𝑌) = ((Σ^‘(𝐹𝑥)) + 𝑌))
7364, 72breqtrd 5096 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7440, 46, 73syl2anc 583 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7574ex 412 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
7675reximdva 3202 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
7776imp 406 . . . . 5 ((𝜑 ∧ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7814, 39, 77syl2anc 583 . . . 4 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
79783exp 1117 . . 3 (𝜑 → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))))
8012, 13, 79rexlimd 3245 . 2 (𝜑 → (∃𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
8111, 80mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  ran crn 5581  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937   < clt 10940  cmin 11135  +crp 12659  [,)cico 13010  [,]cicc 13011  Σcsu 15325  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  sge0ltfirpmpt  43836  sge0ltfirpmpt2  43854
  Copyright terms: Public domain W3C validator