Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ltfirp Structured version   Visualization version   GIF version

Theorem sge0ltfirp 43039
Description: If the sum of nonnegative extended reals is real, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ltfirp.x (𝜑𝑋𝑉)
sge0ltfirp.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0ltfirp.y (𝜑𝑌 ∈ ℝ+)
sge0ltfirp.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0ltfirp (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0ltfirp
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0ltfirp.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
2 sge0ltfirp.x . . . . . 6 (𝜑𝑋𝑉)
3 sge0ltfirp.re . . . . . 6 (𝜑 → (Σ^𝐹) ∈ ℝ)
42, 1, 3sge0rern 43027 . . . . 5 (𝜑 → ¬ +∞ ∈ ran 𝐹)
51, 4fge0iccico 43009 . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
65sge0rnre 43003 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
7 sge0rnn0 43007 . . . 4 ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅
87a1i 11 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅)
92, 1, 3sge0rnbnd 43032 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
10 sge0ltfirp.y . . 3 (𝜑𝑌 ∈ ℝ+)
116, 8, 9, 10suprltrp 41960 . 2 (𝜑 → ∃𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤)
12 nfv 1915 . . 3 𝑤𝜑
13 nfv 1915 . . 3 𝑤𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)
14 simp1 1133 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → 𝜑)
15 vex 3444 . . . . . . . . . 10 𝑤 ∈ V
16 eqid 2798 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
1716elrnmpt 5792 . . . . . . . . . 10 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦)))
1815, 17ax-mp 5 . . . . . . . . 9 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
1918biimpi 219 . . . . . . . 8 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
2019adantr 484 . . . . . . 7 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
21 nfmpt1 5128 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
2221nfrn 5788 . . . . . . . . . . . 12 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
23 nfcv 2955 . . . . . . . . . . . 12 𝑥
24 nfcv 2955 . . . . . . . . . . . 12 𝑥 <
2522, 23, 24nfsup 8899 . . . . . . . . . . 11 𝑥sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < )
26 nfcv 2955 . . . . . . . . . . 11 𝑥
27 nfcv 2955 . . . . . . . . . . 11 𝑥𝑌
2825, 26, 27nfov 7165 . . . . . . . . . 10 𝑥(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌)
29 nfcv 2955 . . . . . . . . . 10 𝑥𝑤
3028, 24, 29nfbr 5077 . . . . . . . . 9 𝑥(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤
31 simpl 486 . . . . . . . . . . . 12 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤)
32 simpr 488 . . . . . . . . . . . 12 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 = Σ𝑦𝑥 (𝐹𝑦))
3331, 32breqtrd 5056 . . . . . . . . . . 11 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
3433ex 416 . . . . . . . . . 10 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3534a1d 25 . . . . . . . . 9 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))))
3630, 35reximdai 3270 . . . . . . . 8 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3736adantl 485 . . . . . . 7 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3820, 37mpd 15 . . . . . 6 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
39383adant1 1127 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
40 simpl 486 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)))
412, 1, 3sge0supre 43028 . . . . . . . . . . . . 13 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
4241oveq1d 7150 . . . . . . . . . . . 12 (𝜑 → ((Σ^𝐹) − 𝑌) = (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌))
4342adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) = (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌))
44 simpr 488 . . . . . . . . . . 11 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
4543, 44eqbrtrd 5052 . . . . . . . . . 10 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
4645adantlr 714 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
47 simpr 488 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
483adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ∈ ℝ)
4910rpred 12419 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
5049adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑌 ∈ ℝ)
51 elinel2 4123 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
5251adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
53 rge0ssre 12834 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ ℝ
545adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞))
5554adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,)+∞))
56 elpwinss 41683 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
5756adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
5857sselda 3915 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
5955, 58ffvelrnd 6829 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
6053, 59sseldi 3913 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
6152, 60fsumrecl 15083 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
6248, 50, 61ltsubaddd 11225 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) ↔ (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌)))
6362adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) ↔ (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌)))
6447, 63mpbid 235 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌))
6554, 57fssresd 6519 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,)+∞))
6652, 65sge0fsum 43026 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 ((𝐹𝑥)‘𝑦))
67 fvres 6664 . . . . . . . . . . . . . . 15 (𝑦𝑥 → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
6867sumeq2i 15048 . . . . . . . . . . . . . 14 Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦)
6968a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7066, 69eqtr2d 2834 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ^‘(𝐹𝑥)))
7170oveq1d 7150 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ𝑦𝑥 (𝐹𝑦) + 𝑌) = ((Σ^‘(𝐹𝑥)) + 𝑌))
7271adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ𝑦𝑥 (𝐹𝑦) + 𝑌) = ((Σ^‘(𝐹𝑥)) + 𝑌))
7364, 72breqtrd 5056 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7440, 46, 73syl2anc 587 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7574ex 416 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
7675reximdva 3233 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
7776imp 410 . . . . 5 ((𝜑 ∧ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7814, 39, 77syl2anc 587 . . . 4 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
79783exp 1116 . . 3 (𝜑 → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))))
8012, 13, 79rexlimd 3276 . 2 (𝜑 → (∃𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
8111, 80mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  supcsup 8888  cr 10525  0cc0 10526   + caddc 10529  +∞cpnf 10661   < clt 10664  cmin 10859  +crp 12377  [,)cico 12728  [,]cicc 12729  Σcsu 15034  Σ^csumge0 43001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-sumge0 43002
This theorem is referenced by:  sge0ltfirpmpt  43047  sge0ltfirpmpt2  43065
  Copyright terms: Public domain W3C validator