![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnffsumgt | Structured version Visualization version GIF version |
Description: If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
sge0pnffsumgt.k | ⊢ Ⅎ𝑘𝜑 |
sge0pnffsumgt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0pnffsumgt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
sge0pnffsumgt.p | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
sge0pnffsumgt.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
Ref | Expression |
---|---|
sge0pnffsumgt | ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < Σ𝑘 ∈ 𝑥 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0pnffsumgt.k | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | sge0pnffsumgt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | icossicc 13400 | . . . 4 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
4 | sge0pnffsumgt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
5 | 3, 4 | sselid 3978 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
6 | sge0pnffsumgt.p | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) | |
7 | sge0pnffsumgt.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
8 | 1, 2, 5, 6, 7 | sge0pnffigtmpt 45029 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
9 | simpr 486 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) | |
10 | nfv 1918 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin) | |
11 | 1, 10 | nfan 1903 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) |
12 | elinel2 4194 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) | |
13 | 12 | adantl 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin) |
14 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝜑) | |
15 | elpwinss 43607 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | |
16 | 15 | sselda 3980 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐴) |
17 | 16 | adantll 713 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐴) |
18 | 14, 17, 4 | syl2anc 585 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝐵 ∈ (0[,)+∞)) |
19 | 11, 13, 18 | sge0fsummptf 45025 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)) = Σ𝑘 ∈ 𝑥 𝐵) |
20 | 19 | adantr 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) → (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)) = Σ𝑘 ∈ 𝑥 𝐵) |
21 | 9, 20 | breqtrd 5170 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) → 𝑌 < Σ𝑘 ∈ 𝑥 𝐵) |
22 | 21 | ex 414 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)) → 𝑌 < Σ𝑘 ∈ 𝑥 𝐵)) |
23 | 22 | reximdva 3169 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < Σ𝑘 ∈ 𝑥 𝐵)) |
24 | 8, 23 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < Σ𝑘 ∈ 𝑥 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 ∃wrex 3071 ∩ cin 3945 𝒫 cpw 4598 class class class wbr 5144 ↦ cmpt 5227 ‘cfv 6535 (class class class)co 7396 Fincfn 8927 ℝcr 11096 0cc0 11097 +∞cpnf 11232 < clt 11235 [,)cico 13313 [,]cicc 13314 Σcsu 15619 Σ^csumge0 44951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-inf2 9623 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-isom 6544 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-sup 9424 df-oi 9492 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 df-nn 12200 df-2 12262 df-3 12263 df-n0 12460 df-z 12546 df-uz 12810 df-rp 12962 df-ico 13317 df-icc 13318 df-fz 13472 df-fzo 13615 df-seq 13954 df-exp 14015 df-hash 14278 df-cj 15033 df-re 15034 df-im 15035 df-sqrt 15169 df-abs 15170 df-clim 15419 df-sum 15620 df-sumge0 44952 |
This theorem is referenced by: sge0gtfsumgt 45032 |
Copyright terms: Public domain | W3C validator |