Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gtfsumgt Structured version   Visualization version   GIF version

Theorem sge0gtfsumgt 45966
Description: If the generalized sum of nonnegative reals is larger than a given number, then that number can be dominated by a finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0gtfsumgt.k 𝑘𝜑
sge0gtfsumgt.a (𝜑𝐴𝑉)
sge0gtfsumgt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0gtfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0gtfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
Assertion
Ref Expression
sge0gtfsumgt (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑦   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑦,𝑘)

Proof of Theorem sge0gtfsumgt
StepHypRef Expression
1 sge0gtfsumgt.k . . . . 5 𝑘𝜑
2 nfcv 2891 . . . . . . 7 𝑘Σ^
3 nfmpt1 5257 . . . . . . 7 𝑘(𝑘𝐴𝐵)
42, 3nffv 6906 . . . . . 6 𝑘^‘(𝑘𝐴𝐵))
5 nfcv 2891 . . . . . 6 𝑘
64, 5nfel 2906 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
71, 6nfan 1894 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8 sge0gtfsumgt.a . . . . 5 (𝜑𝐴𝑉)
98adantr 479 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
10 icossicc 13448 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
11 sge0gtfsumgt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1210, 11sselid 3974 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
1312adantlr 713 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 sge0gtfsumgt.l . . . . . 6 (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
1514adantr 479 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 < (Σ^‘(𝑘𝐴𝐵)))
16 sge0gtfsumgt.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
1716adantr 479 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 ∈ ℝ)
18 simpr 483 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
19 difrp 13047 . . . . . 6 ((𝐶 ∈ ℝ ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2017, 18, 19syl2anc 582 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2115, 20mpbid 231 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+)
227, 9, 13, 21, 18sge0ltfirpmpt2 45949 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
23 simpr 483 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
24 nfv 1909 . . . . . . . . . . . . 13 𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
251, 24nfan 1894 . . . . . . . . . . . 12 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
26 elinel2 4194 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
2726adantl 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
28 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
29 elpwinss 44552 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
3029adantr 479 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑦𝐴)
31 simpr 483 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑦)
3230, 31sseldd 3977 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
3332adantll 712 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
34 rge0ssre 13468 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
3534, 11sselid 3974 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3628, 33, 35syl2anc 582 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3725, 27, 36fsumreclf 45099 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ)
3837recnd 11274 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℂ)
3938ad4ant13 749 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
4018ad2antrr 724 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
4140recnd 11274 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℂ)
4217ad2antrr 724 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℝ)
4342recnd 11274 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℂ)
4441, 43subcld 11603 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℂ)
4539, 44addcomd 11448 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4623, 45breqtrd 5175 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4740, 42resubcld 11674 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ)
4837ad4ant13 749 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℝ)
4940, 47, 48ltsubadd2d 11844 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵 ↔ (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵)))
5046, 49mpbird 256 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵)
5141, 43nncand 11608 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = 𝐶)
5251breq1d 5159 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵𝐶 < Σ𝑘𝑦 𝐵))
5350, 52mpbid 231 . . . . 5 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 < Σ𝑘𝑦 𝐵)
5453ex 411 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → 𝐶 < Σ𝑘𝑦 𝐵))
5554reximdva 3157 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵))
5622, 55mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
57 simpl 481 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝜑)
58 simpr 483 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
59 eqid 2725 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
601, 11, 59fmptdf 7126 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
6110a1i 11 . . . . . . . 8 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
6260, 61fssd 6740 . . . . . . 7 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
638, 62sge0repnf 45909 . . . . . 6 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6463adantr 479 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6558, 64mtbid 323 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
66 notnotb 314 . . . 4 ((Σ^‘(𝑘𝐴𝐵)) = +∞ ↔ ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
6765, 66sylibr 233 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
684nfeq1 2907 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) = +∞
691, 68nfan 1894 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞)
708adantr 479 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐴𝑉)
7111adantlr 713 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
72 simpr 483 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
7316adantr 479 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐶 ∈ ℝ)
7469, 70, 71, 72, 73sge0pnffsumgt 45965 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7557, 67, 74syl2anc 582 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7656, 75pm2.61dan 811 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wnf 1777  wcel 2098  wrex 3059  cin 3943  wss 3944  𝒫 cpw 4604   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11138  cr 11139  0cc0 11140   + caddc 11143  +∞cpnf 11277   < clt 11280  cmin 11476  +crp 13009  [,)cico 13361  [,]cicc 13362  Σcsu 15668  Σ^csumge0 45885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-sumge0 45886
This theorem is referenced by:  sge0uzfsumgt  45967  sge0seq  45969
  Copyright terms: Public domain W3C validator