Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gtfsumgt Structured version   Visualization version   GIF version

Theorem sge0gtfsumgt 43871
Description: If the generalized sum of nonnegative reals is larger than a given number, then that number can be dominated by a finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0gtfsumgt.k 𝑘𝜑
sge0gtfsumgt.a (𝜑𝐴𝑉)
sge0gtfsumgt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0gtfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0gtfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
Assertion
Ref Expression
sge0gtfsumgt (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑦   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑦,𝑘)

Proof of Theorem sge0gtfsumgt
StepHypRef Expression
1 sge0gtfsumgt.k . . . . 5 𝑘𝜑
2 nfcv 2906 . . . . . . 7 𝑘Σ^
3 nfmpt1 5178 . . . . . . 7 𝑘(𝑘𝐴𝐵)
42, 3nffv 6766 . . . . . 6 𝑘^‘(𝑘𝐴𝐵))
5 nfcv 2906 . . . . . 6 𝑘
64, 5nfel 2920 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
71, 6nfan 1903 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8 sge0gtfsumgt.a . . . . 5 (𝜑𝐴𝑉)
98adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
10 icossicc 13097 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
11 sge0gtfsumgt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1210, 11sselid 3915 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
1312adantlr 711 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 sge0gtfsumgt.l . . . . . 6 (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
1514adantr 480 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 < (Σ^‘(𝑘𝐴𝐵)))
16 sge0gtfsumgt.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
1716adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 ∈ ℝ)
18 simpr 484 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
19 difrp 12697 . . . . . 6 ((𝐶 ∈ ℝ ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2017, 18, 19syl2anc 583 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2115, 20mpbid 231 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+)
227, 9, 13, 21, 18sge0ltfirpmpt2 43854 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
23 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
24 nfv 1918 . . . . . . . . . . . . 13 𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
251, 24nfan 1903 . . . . . . . . . . . 12 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
26 elinel2 4126 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
2726adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
28 simpll 763 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
29 elpwinss 42486 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
3029adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑦𝐴)
31 simpr 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑦)
3230, 31sseldd 3918 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
3332adantll 710 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
34 rge0ssre 13117 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
3534, 11sselid 3915 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3628, 33, 35syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3725, 27, 36fsumreclf 43007 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ)
3837recnd 10934 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℂ)
3938ad4ant13 747 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
4018ad2antrr 722 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
4140recnd 10934 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℂ)
4217ad2antrr 722 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℝ)
4342recnd 10934 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℂ)
4441, 43subcld 11262 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℂ)
4539, 44addcomd 11107 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4623, 45breqtrd 5096 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4740, 42resubcld 11333 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ)
4837ad4ant13 747 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℝ)
4940, 47, 48ltsubadd2d 11503 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵 ↔ (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵)))
5046, 49mpbird 256 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵)
5141, 43nncand 11267 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = 𝐶)
5251breq1d 5080 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵𝐶 < Σ𝑘𝑦 𝐵))
5350, 52mpbid 231 . . . . 5 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 < Σ𝑘𝑦 𝐵)
5453ex 412 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → 𝐶 < Σ𝑘𝑦 𝐵))
5554reximdva 3202 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵))
5622, 55mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
57 simpl 482 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝜑)
58 simpr 484 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
59 eqid 2738 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
601, 11, 59fmptdf 6973 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
6110a1i 11 . . . . . . . 8 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
6260, 61fssd 6602 . . . . . . 7 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
638, 62sge0repnf 43814 . . . . . 6 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6463adantr 480 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6558, 64mtbid 323 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
66 notnotb 314 . . . 4 ((Σ^‘(𝑘𝐴𝐵)) = +∞ ↔ ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
6765, 66sylibr 233 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
684nfeq1 2921 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) = +∞
691, 68nfan 1903 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞)
708adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐴𝑉)
7111adantlr 711 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
72 simpr 484 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
7316adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐶 ∈ ℝ)
7469, 70, 71, 72, 73sge0pnffsumgt 43870 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7557, 67, 74syl2anc 583 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7656, 75pm2.61dan 809 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937   < clt 10940  cmin 11135  +crp 12659  [,)cico 13010  [,]cicc 13011  Σcsu 15325  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  sge0uzfsumgt  43872  sge0seq  43874
  Copyright terms: Public domain W3C validator