Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gtfsumgt Structured version   Visualization version   GIF version

Theorem sge0gtfsumgt 42719
Description: If the generalized sum of nonnegative reals is larger than a given number, then that number can be dominated by a finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0gtfsumgt.k 𝑘𝜑
sge0gtfsumgt.a (𝜑𝐴𝑉)
sge0gtfsumgt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0gtfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0gtfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
Assertion
Ref Expression
sge0gtfsumgt (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑦   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑦,𝑘)

Proof of Theorem sge0gtfsumgt
StepHypRef Expression
1 sge0gtfsumgt.k . . . . 5 𝑘𝜑
2 nfcv 2977 . . . . . . 7 𝑘Σ^
3 nfmpt1 5156 . . . . . . 7 𝑘(𝑘𝐴𝐵)
42, 3nffv 6674 . . . . . 6 𝑘^‘(𝑘𝐴𝐵))
5 nfcv 2977 . . . . . 6 𝑘
64, 5nfel 2992 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
71, 6nfan 1896 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8 sge0gtfsumgt.a . . . . 5 (𝜑𝐴𝑉)
98adantr 483 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
10 icossicc 12818 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
11 sge0gtfsumgt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1210, 11sseldi 3964 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
1312adantlr 713 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 sge0gtfsumgt.l . . . . . 6 (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
1514adantr 483 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 < (Σ^‘(𝑘𝐴𝐵)))
16 sge0gtfsumgt.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
1716adantr 483 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 ∈ ℝ)
18 simpr 487 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
19 difrp 12421 . . . . . 6 ((𝐶 ∈ ℝ ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2017, 18, 19syl2anc 586 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2115, 20mpbid 234 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+)
227, 9, 13, 21, 18sge0ltfirpmpt2 42702 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
23 simpr 487 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
24 nfv 1911 . . . . . . . . . . . . 13 𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
251, 24nfan 1896 . . . . . . . . . . . 12 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
26 elinel2 4172 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
2726adantl 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
28 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
29 elpwinss 41304 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
3029adantr 483 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑦𝐴)
31 simpr 487 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑦)
3230, 31sseldd 3967 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
3332adantll 712 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
34 rge0ssre 12838 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
3534, 11sseldi 3964 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3628, 33, 35syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3725, 27, 36fsumreclf 41850 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ)
3837recnd 10663 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℂ)
3938ad4ant13 749 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
4018ad2antrr 724 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
4140recnd 10663 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℂ)
4217ad2antrr 724 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℝ)
4342recnd 10663 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℂ)
4441, 43subcld 10991 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℂ)
4539, 44addcomd 10836 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4623, 45breqtrd 5084 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4740, 42resubcld 11062 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ)
4837ad4ant13 749 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℝ)
4940, 47, 48ltsubadd2d 11232 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵 ↔ (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵)))
5046, 49mpbird 259 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵)
5141, 43nncand 10996 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = 𝐶)
5251breq1d 5068 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵𝐶 < Σ𝑘𝑦 𝐵))
5350, 52mpbid 234 . . . . 5 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 < Σ𝑘𝑦 𝐵)
5453ex 415 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → 𝐶 < Σ𝑘𝑦 𝐵))
5554reximdva 3274 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵))
5622, 55mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
57 simpl 485 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝜑)
58 simpr 487 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
59 eqid 2821 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
601, 11, 59fmptdf 6875 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
6110a1i 11 . . . . . . . 8 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
6260, 61fssd 6522 . . . . . . 7 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
638, 62sge0repnf 42662 . . . . . 6 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6463adantr 483 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6558, 64mtbid 326 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
66 notnotb 317 . . . 4 ((Σ^‘(𝑘𝐴𝐵)) = +∞ ↔ ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
6765, 66sylibr 236 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
684nfeq1 2993 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) = +∞
691, 68nfan 1896 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞)
708adantr 483 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐴𝑉)
7111adantlr 713 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
72 simpr 487 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
7316adantr 483 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐶 ∈ ℝ)
7469, 70, 71, 72, 73sge0pnffsumgt 42718 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7557, 67, 74syl2anc 586 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7656, 75pm2.61dan 811 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wnf 1780  wcel 2110  wrex 3139  cin 3934  wss 3935  𝒫 cpw 4538   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  Fincfn 8503  cc 10529  cr 10530  0cc0 10531   + caddc 10534  +∞cpnf 10666   < clt 10669  cmin 10864  +crp 12383  [,)cico 12734  [,]cicc 12735  Σcsu 15036  Σ^csumge0 42638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-sumge0 42639
This theorem is referenced by:  sge0uzfsumgt  42720  sge0seq  42722
  Copyright terms: Public domain W3C validator