Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gtfsumgt Structured version   Visualization version   GIF version

Theorem sge0gtfsumgt 46441
Description: If the generalized sum of nonnegative reals is larger than a given number, then that number can be dominated by a finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0gtfsumgt.k 𝑘𝜑
sge0gtfsumgt.a (𝜑𝐴𝑉)
sge0gtfsumgt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0gtfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0gtfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
Assertion
Ref Expression
sge0gtfsumgt (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑦   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑦,𝑘)

Proof of Theorem sge0gtfsumgt
StepHypRef Expression
1 sge0gtfsumgt.k . . . . 5 𝑘𝜑
2 nfcv 2891 . . . . . . 7 𝑘Σ^
3 nfmpt1 5206 . . . . . . 7 𝑘(𝑘𝐴𝐵)
42, 3nffv 6868 . . . . . 6 𝑘^‘(𝑘𝐴𝐵))
5 nfcv 2891 . . . . . 6 𝑘
64, 5nfel 2906 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
71, 6nfan 1899 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8 sge0gtfsumgt.a . . . . 5 (𝜑𝐴𝑉)
98adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
10 icossicc 13397 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
11 sge0gtfsumgt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1210, 11sselid 3944 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
1312adantlr 715 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 sge0gtfsumgt.l . . . . . 6 (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
1514adantr 480 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 < (Σ^‘(𝑘𝐴𝐵)))
16 sge0gtfsumgt.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
1716adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 ∈ ℝ)
18 simpr 484 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
19 difrp 12991 . . . . . 6 ((𝐶 ∈ ℝ ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2017, 18, 19syl2anc 584 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2115, 20mpbid 232 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+)
227, 9, 13, 21, 18sge0ltfirpmpt2 46424 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
23 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
24 nfv 1914 . . . . . . . . . . . . 13 𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
251, 24nfan 1899 . . . . . . . . . . . 12 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
26 elinel2 4165 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
2726adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
28 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
29 elpwinss 45043 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
3029adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑦𝐴)
31 simpr 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑦)
3230, 31sseldd 3947 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
3332adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
34 rge0ssre 13417 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
3534, 11sselid 3944 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3628, 33, 35syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3725, 27, 36fsumreclf 45574 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ)
3837recnd 11202 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℂ)
3938ad4ant13 751 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
4018ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
4140recnd 11202 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℂ)
4217ad2antrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℝ)
4342recnd 11202 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℂ)
4441, 43subcld 11533 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℂ)
4539, 44addcomd 11376 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4623, 45breqtrd 5133 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4740, 42resubcld 11606 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ)
4837ad4ant13 751 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℝ)
4940, 47, 48ltsubadd2d 11776 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵 ↔ (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵)))
5046, 49mpbird 257 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵)
5141, 43nncand 11538 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = 𝐶)
5251breq1d 5117 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵𝐶 < Σ𝑘𝑦 𝐵))
5350, 52mpbid 232 . . . . 5 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 < Σ𝑘𝑦 𝐵)
5453ex 412 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → 𝐶 < Σ𝑘𝑦 𝐵))
5554reximdva 3146 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵))
5622, 55mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
57 simpl 482 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝜑)
58 simpr 484 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
59 eqid 2729 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
601, 11, 59fmptdf 7089 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
6110a1i 11 . . . . . . . 8 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
6260, 61fssd 6705 . . . . . . 7 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
638, 62sge0repnf 46384 . . . . . 6 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6463adantr 480 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6558, 64mtbid 324 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
66 notnotb 315 . . . 4 ((Σ^‘(𝑘𝐴𝐵)) = +∞ ↔ ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
6765, 66sylibr 234 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
684nfeq1 2907 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) = +∞
691, 68nfan 1899 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞)
708adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐴𝑉)
7111adantlr 715 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
72 simpr 484 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
7316adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐶 ∈ ℝ)
7469, 70, 71, 72, 73sge0pnffsumgt 46440 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7557, 67, 74syl2anc 584 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7656, 75pm2.61dan 812 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205   < clt 11208  cmin 11405  +crp 12951  [,)cico 13308  [,]cicc 13309  Σcsu 15652  Σ^csumge0 46360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-sumge0 46361
This theorem is referenced by:  sge0uzfsumgt  46442  sge0seq  46444
  Copyright terms: Public domain W3C validator