![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0rnbnd | Structured version Visualization version GIF version |
Description: The range used in the definition of Σ^ is bounded, when the whole sum is a real number. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0rnbnd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
sge0rnbnd.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
sge0rnbnd.re | ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) |
Ref | Expression |
---|---|
sge0rnbnd | ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0rnbnd.re | . 2 ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) | |
2 | simpl 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → 𝜑) | |
3 | vex 3401 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
4 | eqid 2778 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | |
5 | 4 | elrnmpt 5618 | . . . . . . 7 ⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
6 | 3, 5 | ax-mp 5 | . . . . . 6 ⊢ (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
7 | 6 | biimpi 208 | . . . . 5 ⊢ (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
8 | 7 | adantl 475 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
9 | simp3 1129 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | |
10 | sge0rnbnd.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | 10 | adantr 474 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ 𝑉) |
12 | sge0rnbnd.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
13 | 12 | adantr 474 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
14 | 10, 12, 1 | sge0rern 41529 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
15 | 14 | adantr 474 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ¬ +∞ ∈ ran 𝐹) |
16 | 13, 15 | fge0iccico 41511 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞)) |
17 | elpwinss 40148 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ⊆ 𝑋) | |
18 | 17 | adantl 475 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ⊆ 𝑋) |
19 | elinel2 4023 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin) | |
20 | 19 | adantl 475 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin) |
21 | 11, 16, 18, 20 | fsumlesge0 41518 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤ (Σ^‘𝐹)) |
22 | 21 | 3adant3 1123 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤ (Σ^‘𝐹)) |
23 | 9, 22 | eqbrtrd 4908 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → 𝑤 ≤ (Σ^‘𝐹)) |
24 | 23 | 3exp 1109 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) → 𝑤 ≤ (Σ^‘𝐹)))) |
25 | 24 | rexlimdv 3212 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) → 𝑤 ≤ (Σ^‘𝐹))) |
26 | 2, 8, 25 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → 𝑤 ≤ (Σ^‘𝐹)) |
27 | 26 | ralrimiva 3148 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ (Σ^‘𝐹)) |
28 | brralrspcev 4946 | . 2 ⊢ (((Σ^‘𝐹) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ (Σ^‘𝐹)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) | |
29 | 1, 27, 28 | syl2anc 579 | 1 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃wrex 3091 Vcvv 3398 ∩ cin 3791 ⊆ wss 3792 𝒫 cpw 4379 class class class wbr 4886 ↦ cmpt 4965 ran crn 5356 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 Fincfn 8241 ℝcr 10271 0cc0 10272 +∞cpnf 10408 ≤ cle 10412 [,]cicc 12490 Σcsu 14824 Σ^csumge0 41503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-sumge0 41504 |
This theorem is referenced by: sge0ltfirp 41541 |
Copyright terms: Public domain | W3C validator |