Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0rnbnd | Structured version Visualization version GIF version |
Description: The range used in the definition of Σ^ is bounded, when the whole sum is a real number. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0rnbnd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
sge0rnbnd.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
sge0rnbnd.re | ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) |
Ref | Expression |
---|---|
sge0rnbnd | ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0rnbnd.re | . 2 ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) | |
2 | simpl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → 𝜑) | |
3 | vex 3436 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
4 | eqid 2738 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | |
5 | 4 | elrnmpt 5865 | . . . . . . 7 ⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
6 | 3, 5 | ax-mp 5 | . . . . . 6 ⊢ (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
7 | 6 | biimpi 215 | . . . . 5 ⊢ (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
8 | 7 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
9 | simp3 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | |
10 | sge0rnbnd.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | 10 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ 𝑉) |
12 | sge0rnbnd.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
13 | 12 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
14 | 10, 12, 1 | sge0rern 43926 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
15 | 14 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ¬ +∞ ∈ ran 𝐹) |
16 | 13, 15 | fge0iccico 43908 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞)) |
17 | elpwinss 42597 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ⊆ 𝑋) | |
18 | 17 | adantl 482 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ⊆ 𝑋) |
19 | elinel2 4130 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin) | |
20 | 19 | adantl 482 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin) |
21 | 11, 16, 18, 20 | fsumlesge0 43915 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤ (Σ^‘𝐹)) |
22 | 21 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤ (Σ^‘𝐹)) |
23 | 9, 22 | eqbrtrd 5096 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → 𝑤 ≤ (Σ^‘𝐹)) |
24 | 23 | 3exp 1118 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) → 𝑤 ≤ (Σ^‘𝐹)))) |
25 | 24 | rexlimdv 3212 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) → 𝑤 ≤ (Σ^‘𝐹))) |
26 | 2, 8, 25 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → 𝑤 ≤ (Σ^‘𝐹)) |
27 | 26 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ (Σ^‘𝐹)) |
28 | brralrspcev 5134 | . 2 ⊢ (((Σ^‘𝐹) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ (Σ^‘𝐹)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) | |
29 | 1, 27, 28 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℝcr 10870 0cc0 10871 +∞cpnf 11006 ≤ cle 11010 [,]cicc 13082 Σcsu 15397 Σ^csumge0 43900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-sumge0 43901 |
This theorem is referenced by: sge0ltfirp 43938 |
Copyright terms: Public domain | W3C validator |