| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0rnbnd | Structured version Visualization version GIF version | ||
| Description: The range used in the definition of Σ^ is bounded, when the whole sum is a real number. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0rnbnd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| sge0rnbnd.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| sge0rnbnd.re | ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) |
| Ref | Expression |
|---|---|
| sge0rnbnd | ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0rnbnd.re | . 2 ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → 𝜑) | |
| 3 | vex 3440 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | |
| 5 | 4 | elrnmpt 5898 | . . . . . . 7 ⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
| 6 | 3, 5 | ax-mp 5 | . . . . . 6 ⊢ (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
| 7 | 6 | biimpi 216 | . . . . 5 ⊢ (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
| 9 | simp3 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | |
| 10 | sge0rnbnd.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 11 | 10 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ 𝑉) |
| 12 | sge0rnbnd.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 13 | 12 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
| 14 | 10, 12, 1 | sge0rern 46432 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
| 15 | 14 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ¬ +∞ ∈ ran 𝐹) |
| 16 | 13, 15 | fge0iccico 46414 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞)) |
| 17 | elpwinss 45092 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ⊆ 𝑋) | |
| 18 | 17 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ⊆ 𝑋) |
| 19 | elinel2 4152 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin) | |
| 20 | 19 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin) |
| 21 | 11, 16, 18, 20 | fsumlesge0 46421 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤ (Σ^‘𝐹)) |
| 22 | 21 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤ (Σ^‘𝐹)) |
| 23 | 9, 22 | eqbrtrd 5113 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → 𝑤 ≤ (Σ^‘𝐹)) |
| 24 | 23 | 3exp 1119 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) → 𝑤 ≤ (Σ^‘𝐹)))) |
| 25 | 24 | rexlimdv 3131 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) → 𝑤 ≤ (Σ^‘𝐹))) |
| 26 | 2, 8, 25 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → 𝑤 ≤ (Σ^‘𝐹)) |
| 27 | 26 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ (Σ^‘𝐹)) |
| 28 | brralrspcev 5151 | . 2 ⊢ (((Σ^‘𝐹) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ (Σ^‘𝐹)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) | |
| 29 | 1, 27, 28 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 class class class wbr 5091 ↦ cmpt 5172 ran crn 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 ℝcr 11005 0cc0 11006 +∞cpnf 11143 ≤ cle 11147 [,]cicc 13248 Σcsu 15593 Σ^csumge0 46406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-sumge0 46407 |
| This theorem is referenced by: sge0ltfirp 46444 |
| Copyright terms: Public domain | W3C validator |