Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunltfirp Structured version   Visualization version   GIF version

Theorem omeiunltfirp 46616
Description: If the outer measure of a countable union is not +∞, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunltfirp.o (𝜑𝑂 ∈ OutMeas)
omeiunltfirp.x 𝑋 = dom 𝑂
omeiunltfirp.z 𝑍 = (ℤ𝑁)
omeiunltfirp.e (𝜑𝐸:𝑍⟶𝒫 𝑋)
omeiunltfirp.re (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
omeiunltfirp.y (𝜑𝑌 ∈ ℝ+)
Assertion
Ref Expression
omeiunltfirp (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Distinct variable groups:   𝑛,𝐸,𝑧   𝑛,𝑂,𝑧   𝑛,𝑋   𝑧,𝑌   𝑛,𝑍,𝑧   𝜑,𝑛,𝑧
Allowed substitution hints:   𝑁(𝑧,𝑛)   𝑋(𝑧)   𝑌(𝑛)

Proof of Theorem omeiunltfirp
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeiunltfirp.z . . . . . 6 𝑍 = (ℤ𝑁)
21fvexi 6836 . . . . 5 𝑍 ∈ V
32a1i 11 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝑍 ∈ V)
4 omeiunltfirp.o . . . . . . . 8 (𝜑𝑂 ∈ OutMeas)
54adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑂 ∈ OutMeas)
6 omeiunltfirp.x . . . . . . 7 𝑋 = dom 𝑂
7 omeiunltfirp.e . . . . . . . . 9 (𝜑𝐸:𝑍⟶𝒫 𝑋)
87ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝒫 𝑋)
9 fvex 6835 . . . . . . . . 9 (𝐸𝑛) ∈ V
109elpw 4551 . . . . . . . 8 ((𝐸𝑛) ∈ 𝒫 𝑋 ↔ (𝐸𝑛) ⊆ 𝑋)
118, 10sylib 218 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑋)
125, 6, 11omecl 46600 . . . . . 6 ((𝜑𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
13 eqid 2731 . . . . . 6 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
1412, 13fmptd 7047 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
1514adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
16 simpr 484 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
17 omeiunltfirp.re . . . . 5 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
1817adantr 480 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
193, 15, 16, 18sge0pnffigt 46493 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
20 simpl 482 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)))
21 simpr 484 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
22 elpwinss 45145 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
2322resmptd 5988 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → ((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
2423fveq2d 6826 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2524adantr 480 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2621, 25breqtrd 5115 . . . . . . . 8 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2726adantll 714 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2817rexrd 11162 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
2928ad2antrr 726 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
30 simpr 484 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
314ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
327ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝐸:𝑍⟶𝒫 𝑋)
3322adantr 480 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
34 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
3533, 34sseldd 3930 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
3635adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
3732, 36ffvelcdmd 7018 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ∈ 𝒫 𝑋)
3837, 10sylib 218 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑋)
3931, 6, 38omecl 46600 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
40 eqid 2731 . . . . . . . . . . 11 (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))
4139, 40fmptd 7047 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,]+∞))
4230, 41sge0xrcl 46482 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
4342adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
44 elinel2 4149 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
4544adantl 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
46 rge0ssre 13356 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
47 0xr 11159 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4847a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ∈ ℝ*)
49 pnfxr 11166 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → +∞ ∈ ℝ*)
5131, 6, 38omexrcl 46604 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ*)
52 iccgelb 13302 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐸𝑛)))
5348, 50, 39, 52syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ≤ (𝑂‘(𝐸𝑛)))
5411ralrimiva 3124 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
55 iunss 4992 . . . . . . . . . . . . . . . . . 18 ( 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5654, 55sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5756ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5831, 6, 57omexrcl 46604 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
59 ssiun2 4994 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6036, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6131, 6, 57, 60omessle 46595 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ≤ (𝑂 𝑛𝑍 (𝐸𝑛)))
6217ltpnfd 13020 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6362ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6451, 58, 50, 61, 63xrlelttrd 13059 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) < +∞)
6548, 50, 51, 53, 64elicod 13295 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
6646, 65sselid 3927 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ)
6745, 66fsumrecl 15641 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) ∈ ℝ)
68 omeiunltfirp.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ+)
6968rpred 12934 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
7069adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
7167, 70readdcld 11141 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
7271rexrd 11162 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
7372adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
74 simpr 484 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
7565, 40fmptd 7047 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,)+∞))
7645, 75sge0fsum 46484 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘))
77 eqidd 2732 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
78 2fveq3 6827 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
7978adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) ∧ 𝑛 = 𝑘) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
80 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → 𝑘𝑧)
81 fvexd 6837 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑂‘(𝐸𝑘)) ∈ V)
8277, 79, 80, 81fvmptd 6936 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = (𝑂‘(𝐸𝑘)))
8382sumeq2dv 15609 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = Σ𝑘𝑧 (𝑂‘(𝐸𝑘)))
84 2fveq3 6827 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑂‘(𝐸𝑘)) = (𝑂‘(𝐸𝑛)))
8584cbvsumv 15603 . . . . . . . . . . . 12 Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛))
8685a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
8776, 83, 863eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
8868adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ+)
8967, 88ltaddrpd 12967 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9087, 89eqbrtrd 5111 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9190adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9229, 43, 73, 74, 91xrlttrd 13058 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9320, 27, 92syl2anc 584 . . . . . 6 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9493ex 412 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9594adantlr 715 . . . 4 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9695reximdva 3145 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9719, 96mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
98 simpl 482 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝜑)
99 simpr 484 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
1002a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
101100, 14sge0repnf 46483 . . . . 5 (𝜑 → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
102101adantr 480 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
10399, 102mpbird 257 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
104 nfv 1915 . . . . . 6 𝑛𝜑
105 nfcv 2894 . . . . . . . 8 𝑛Σ^
106 nfmpt1 5188 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
107105, 106nffv 6832 . . . . . . 7 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
108 nfcv 2894 . . . . . . 7 𝑛
109107, 108nfel 2909 . . . . . 6 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ
110104, 109nfan 1900 . . . . 5 𝑛(𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
1112a1i 11 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑍 ∈ V)
11212adantlr 715 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
11368adantr 480 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑌 ∈ ℝ+)
114 simpr 484 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
115110, 111, 112, 113, 114sge0ltfirpmpt 46505 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
11617ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
117114ad2antrr 726 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
11871ad4ant13 751 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
119 nfcv 2894 . . . . . . . . 9 𝑛𝐸
120104, 119, 4, 6, 1, 7omeiunle 46614 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
121120ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
122 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
123 simpll 766 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝜑)
124 2fveq3 6827 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑚)))
125124cbvmptv 5193 . . . . . . . . . . . . . . 15 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))
126125fveq2i 6825 . . . . . . . . . . . . . 14 ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))))
127126eleq1i 2822 . . . . . . . . . . . . 13 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
128127biimpi 216 . . . . . . . . . . . 12 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
129128ad2antlr 727 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
130 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
13144adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
13265adantllr 719 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
133131, 132sge0fsummpt 46487 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
134123, 129, 130, 133syl21anc 837 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
135134oveq1d 7361 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
136135adantr 480 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
137122, 136breqtrd 5115 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
138116, 117, 118, 121, 137lelttrd 11271 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
139138ex 412 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
140139reximdva 3145 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
141115, 140mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
14298, 103, 141syl2anc 584 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
14397, 142pm2.61dan 812 1 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856   ciun 4939   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cr 11005  0cc0 11006   + caddc 11009  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cuz 12732  +crp 12890  [,)cico 13247  [,]cicc 13248  Σcsu 15593  Σ^csumge0 46459  OutMeascome 46586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46460  df-ome 46587
This theorem is referenced by:  carageniuncllem2  46619
  Copyright terms: Public domain W3C validator