| Step | Hyp | Ref
| Expression |
| 1 | | omeiunltfirp.z |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑁) |
| 2 | 1 | fvexi 6920 |
. . . . 5
⊢ 𝑍 ∈ V |
| 3 | 2 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) → 𝑍 ∈ V) |
| 4 | | omeiunltfirp.o |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| 5 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑂 ∈ OutMeas) |
| 6 | | omeiunltfirp.x |
. . . . . . 7
⊢ 𝑋 = ∪
dom 𝑂 |
| 7 | | omeiunltfirp.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸:𝑍⟶𝒫 𝑋) |
| 8 | 7 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ 𝒫 𝑋) |
| 9 | | fvex 6919 |
. . . . . . . . 9
⊢ (𝐸‘𝑛) ∈ V |
| 10 | 9 | elpw 4604 |
. . . . . . . 8
⊢ ((𝐸‘𝑛) ∈ 𝒫 𝑋 ↔ (𝐸‘𝑛) ⊆ 𝑋) |
| 11 | 8, 10 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ 𝑋) |
| 12 | 5, 6, 11 | omecl 46518 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
| 13 | | eqid 2737 |
. . . . . 6
⊢ (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) |
| 14 | 12, 13 | fmptd 7134 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))):𝑍⟶(0[,]+∞)) |
| 15 | 14 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) → (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))):𝑍⟶(0[,]+∞)) |
| 16 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) |
| 17 | | omeiunltfirp.re |
. . . . 5
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈ ℝ) |
| 18 | 17 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈ ℝ) |
| 19 | 3, 15, 16, 18 | sge0pnffigt 46411 |
. . 3
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧))) |
| 20 | | simpl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧))) → (𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin))) |
| 21 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧))) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧))) |
| 22 | | elpwinss 45054 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ⊆ 𝑍) |
| 23 | 22 | resmptd 6058 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → ((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧) = (𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) |
| 24 | 23 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝒫 𝑍 ∩ Fin) →
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧)) =
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) |
| 25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧))) →
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧)) =
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) |
| 26 | 21, 25 | breqtrd 5169 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧))) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) |
| 27 | 26 | adantll 714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧))) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) |
| 28 | 17 | rexrd 11311 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈
ℝ*) |
| 29 | 28 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈
ℝ*) |
| 30 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) |
| 31 | 4 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → 𝑂 ∈ OutMeas) |
| 32 | 7 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → 𝐸:𝑍⟶𝒫 𝑋) |
| 33 | 22 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛 ∈ 𝑧) → 𝑧 ⊆ 𝑍) |
| 34 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛 ∈ 𝑧) → 𝑛 ∈ 𝑧) |
| 35 | 33, 34 | sseldd 3984 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛 ∈ 𝑧) → 𝑛 ∈ 𝑍) |
| 36 | 35 | adantll 714 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → 𝑛 ∈ 𝑍) |
| 37 | 32, 36 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝐸‘𝑛) ∈ 𝒫 𝑋) |
| 38 | 37, 10 | sylib 218 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝐸‘𝑛) ⊆ 𝑋) |
| 39 | 31, 6, 38 | omecl 46518 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
| 40 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))) |
| 41 | 39, 40 | fmptd 7134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))):𝑧⟶(0[,]+∞)) |
| 42 | 30, 41 | sge0xrcl 46400 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) ∈
ℝ*) |
| 43 | 42 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) →
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) ∈
ℝ*) |
| 44 | | elinel2 4202 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin) |
| 45 | 44 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin) |
| 46 | | rge0ssre 13496 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ ℝ |
| 47 | | 0xr 11308 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ* |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → 0 ∈
ℝ*) |
| 49 | | pnfxr 11315 |
. . . . . . . . . . . . . . 15
⊢ +∞
∈ ℝ* |
| 50 | 49 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → +∞ ∈
ℝ*) |
| 51 | 31, 6, 38 | omexrcl 46522 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘(𝐸‘𝑛)) ∈
ℝ*) |
| 52 | | iccgelb 13443 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) → 0 ≤
(𝑂‘(𝐸‘𝑛))) |
| 53 | 48, 50, 39, 52 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → 0 ≤ (𝑂‘(𝐸‘𝑛))) |
| 54 | 11 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ 𝑋) |
| 55 | | iunss 5045 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ 𝑋 ↔ ∀𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ 𝑋) |
| 56 | 54, 55 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ 𝑋) |
| 57 | 56 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ 𝑋) |
| 58 | 31, 6, 57 | omexrcl 46522 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈
ℝ*) |
| 59 | | ssiun2 5047 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑍 → (𝐸‘𝑛) ⊆ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
| 60 | 36, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝐸‘𝑛) ⊆ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
| 61 | 31, 6, 57, 60 | omessle 46513 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘(𝐸‘𝑛)) ≤ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| 62 | 17 | ltpnfd 13163 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < +∞) |
| 63 | 62 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < +∞) |
| 64 | 51, 58, 50, 61, 63 | xrlelttrd 13202 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘(𝐸‘𝑛)) < +∞) |
| 65 | 48, 50, 51, 53, 64 | elicod 13437 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,)+∞)) |
| 66 | 46, 65 | sselid 3981 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘(𝐸‘𝑛)) ∈ ℝ) |
| 67 | 45, 66 | fsumrecl 15770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) ∈ ℝ) |
| 68 | | omeiunltfirp.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
| 69 | 68 | rpred 13077 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ) |
| 71 | 67, 70 | readdcld 11290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌) ∈ ℝ) |
| 72 | 71 | rexrd 11311 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌) ∈
ℝ*) |
| 73 | 72 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) → (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌) ∈
ℝ*) |
| 74 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) |
| 75 | 65, 40 | fmptd 7134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))):𝑧⟶(0[,)+∞)) |
| 76 | 45, 75 | sge0fsum 46402 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) = Σ𝑘 ∈ 𝑧 ((𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))‘𝑘)) |
| 77 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑧) → (𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) |
| 78 | | 2fveq3 6911 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝑂‘(𝐸‘𝑛)) = (𝑂‘(𝐸‘𝑘))) |
| 79 | 78 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑧) ∧ 𝑛 = 𝑘) → (𝑂‘(𝐸‘𝑛)) = (𝑂‘(𝐸‘𝑘))) |
| 80 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑧) → 𝑘 ∈ 𝑧) |
| 81 | | fvexd 6921 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑧) → (𝑂‘(𝐸‘𝑘)) ∈ V) |
| 82 | 77, 79, 80, 81 | fvmptd 7023 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑧) → ((𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))‘𝑘) = (𝑂‘(𝐸‘𝑘))) |
| 83 | 82 | sumeq2dv 15738 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘 ∈ 𝑧 ((𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))‘𝑘) = Σ𝑘 ∈ 𝑧 (𝑂‘(𝐸‘𝑘))) |
| 84 | | 2fveq3 6911 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝑂‘(𝐸‘𝑘)) = (𝑂‘(𝐸‘𝑛))) |
| 85 | 84 | cbvsumv 15732 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
𝑧 (𝑂‘(𝐸‘𝑘)) = Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) |
| 86 | 85 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘 ∈ 𝑧 (𝑂‘(𝐸‘𝑘)) = Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛))) |
| 87 | 76, 83, 86 | 3eqtrd 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) = Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛))) |
| 88 | 68 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈
ℝ+) |
| 89 | 67, 88 | ltaddrpd 13110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 90 | 87, 89 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 91 | 90 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) →
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 92 | 29, 43, 73, 74, 91 | xrlttrd 13201 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛))))) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 93 | 20, 27, 92 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧))) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 94 | 93 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧)) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌))) |
| 95 | 94 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧)) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌))) |
| 96 | 95 | reximdva 3168 |
. . 3
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) <
(Σ^‘((𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) ↾ 𝑧)) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌))) |
| 97 | 19, 96 | mpd 15 |
. 2
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 98 | | simpl 482 |
. . 3
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) → 𝜑) |
| 99 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) → ¬
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) |
| 100 | 2 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ V) |
| 101 | 100, 14 | sge0repnf 46401 |
. . . . 5
⊢ (𝜑 →
((Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ ↔ ¬
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞)) |
| 102 | 101 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) →
((Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ ↔ ¬
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞)) |
| 103 | 99, 102 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) |
| 104 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑛𝜑 |
| 105 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑛Σ^ |
| 106 | | nfmpt1 5250 |
. . . . . . . 8
⊢
Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) |
| 107 | 105, 106 | nffv 6916 |
. . . . . . 7
⊢
Ⅎ𝑛(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) |
| 108 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑛ℝ |
| 109 | 107, 108 | nfel 2920 |
. . . . . 6
⊢
Ⅎ𝑛(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ |
| 110 | 104, 109 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑛(𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) |
| 111 | 2 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) → 𝑍 ∈ V) |
| 112 | 12 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
| 113 | 68 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) → 𝑌 ∈
ℝ+) |
| 114 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) |
| 115 | 110, 111,
112, 113, 114 | sge0ltfirpmpt 46423 |
. . . 4
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩
Fin)(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) |
| 116 | 17 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈ ℝ) |
| 117 | 114 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) |
| 118 | 71 | ad4ant13 751 |
. . . . . . 7
⊢ ((((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) → (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌) ∈ ℝ) |
| 119 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝐸 |
| 120 | 104, 119,
4, 6, 1, 7 | omeiunle 46532 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))))) |
| 121 | 120 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))))) |
| 122 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) |
| 123 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝜑) |
| 124 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → (𝑂‘(𝐸‘𝑛)) = (𝑂‘(𝐸‘𝑚))) |
| 125 | 124 | cbvmptv 5255 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚))) |
| 126 | 125 | fveq2i 6909 |
. . . . . . . . . . . . . 14
⊢
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) =
(Σ^‘(𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚)))) |
| 127 | 126 | eleq1i 2832 |
. . . . . . . . . . . . 13
⊢
((Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ ↔
(Σ^‘(𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚)))) ∈ ℝ) |
| 128 | 127 | biimpi 216 |
. . . . . . . . . . . 12
⊢
((Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ →
(Σ^‘(𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚)))) ∈ ℝ) |
| 129 | 128 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚)))) ∈ ℝ) |
| 130 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) |
| 131 | 44 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧
(Σ^‘(𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin) |
| 132 | 65 | adantllr 719 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧
(Σ^‘(𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,)+∞)) |
| 133 | 131, 132 | sge0fsummpt 46405 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧
(Σ^‘(𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) = Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛))) |
| 134 | 123, 129,
130, 133 | syl21anc 838 |
. . . . . . . . . 10
⊢ (((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) = Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛))) |
| 135 | 134 | oveq1d 7446 |
. . . . . . . . 9
⊢ (((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) →
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌) = (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 136 | 135 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) →
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌) = (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 137 | 122, 136 | breqtrd 5169 |
. . . . . . 7
⊢ ((((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 138 | 116, 117,
118, 121, 137 | lelttrd 11419 |
. . . . . 6
⊢ ((((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌)) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 139 | 138 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) →
((Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌))) |
| 140 | 139 | reximdva 3168 |
. . . 4
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) → (∃𝑧 ∈ (𝒫 𝑍 ∩
Fin)(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) <
((Σ^‘(𝑛 ∈ 𝑧 ↦ (𝑂‘(𝐸‘𝑛)))) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌))) |
| 141 | 115, 140 | mpd 15 |
. . 3
⊢ ((𝜑 ∧
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 142 | 98, 103, 141 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |
| 143 | 97, 142 | pm2.61dan 813 |
1
⊢ (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) |