Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunltfirp Structured version   Visualization version   GIF version

Theorem omeiunltfirp 44750
Description: If the outer measure of a countable union is not +∞, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunltfirp.o (𝜑𝑂 ∈ OutMeas)
omeiunltfirp.x 𝑋 = dom 𝑂
omeiunltfirp.z 𝑍 = (ℤ𝑁)
omeiunltfirp.e (𝜑𝐸:𝑍⟶𝒫 𝑋)
omeiunltfirp.re (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
omeiunltfirp.y (𝜑𝑌 ∈ ℝ+)
Assertion
Ref Expression
omeiunltfirp (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Distinct variable groups:   𝑛,𝐸,𝑧   𝑛,𝑂,𝑧   𝑛,𝑋   𝑧,𝑌   𝑛,𝑍,𝑧   𝜑,𝑛,𝑧
Allowed substitution hints:   𝑁(𝑧,𝑛)   𝑋(𝑧)   𝑌(𝑛)

Proof of Theorem omeiunltfirp
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeiunltfirp.z . . . . . 6 𝑍 = (ℤ𝑁)
21fvexi 6856 . . . . 5 𝑍 ∈ V
32a1i 11 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝑍 ∈ V)
4 omeiunltfirp.o . . . . . . . 8 (𝜑𝑂 ∈ OutMeas)
54adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑂 ∈ OutMeas)
6 omeiunltfirp.x . . . . . . 7 𝑋 = dom 𝑂
7 omeiunltfirp.e . . . . . . . . 9 (𝜑𝐸:𝑍⟶𝒫 𝑋)
87ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝒫 𝑋)
9 fvex 6855 . . . . . . . . 9 (𝐸𝑛) ∈ V
109elpw 4564 . . . . . . . 8 ((𝐸𝑛) ∈ 𝒫 𝑋 ↔ (𝐸𝑛) ⊆ 𝑋)
118, 10sylib 217 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑋)
125, 6, 11omecl 44734 . . . . . 6 ((𝜑𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
13 eqid 2736 . . . . . 6 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
1412, 13fmptd 7062 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
1514adantr 481 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
16 simpr 485 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
17 omeiunltfirp.re . . . . 5 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
1817adantr 481 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
193, 15, 16, 18sge0pnffigt 44627 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
20 simpl 483 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)))
21 simpr 485 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
22 elpwinss 43247 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
2322resmptd 5994 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → ((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
2423fveq2d 6846 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2524adantr 481 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2621, 25breqtrd 5131 . . . . . . . 8 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2726adantll 712 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2817rexrd 11205 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
2928ad2antrr 724 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
30 simpr 485 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
314ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
327ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝐸:𝑍⟶𝒫 𝑋)
3322adantr 481 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
34 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
3533, 34sseldd 3945 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
3635adantll 712 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
3732, 36ffvelcdmd 7036 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ∈ 𝒫 𝑋)
3837, 10sylib 217 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑋)
3931, 6, 38omecl 44734 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
40 eqid 2736 . . . . . . . . . . 11 (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))
4139, 40fmptd 7062 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,]+∞))
4230, 41sge0xrcl 44616 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
4342adantr 481 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
44 elinel2 4156 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
4544adantl 482 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
46 rge0ssre 13373 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
47 0xr 11202 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4847a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ∈ ℝ*)
49 pnfxr 11209 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → +∞ ∈ ℝ*)
5131, 6, 38omexrcl 44738 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ*)
52 iccgelb 13320 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐸𝑛)))
5348, 50, 39, 52syl3anc 1371 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ≤ (𝑂‘(𝐸𝑛)))
5411ralrimiva 3143 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
55 iunss 5005 . . . . . . . . . . . . . . . . . 18 ( 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5654, 55sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5756ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5831, 6, 57omexrcl 44738 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
59 ssiun2 5007 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6036, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6131, 6, 57, 60omessle 44729 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ≤ (𝑂 𝑛𝑍 (𝐸𝑛)))
6217ltpnfd 13042 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6362ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6451, 58, 50, 61, 63xrlelttrd 13079 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) < +∞)
6548, 50, 51, 53, 64elicod 13314 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
6646, 65sselid 3942 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ)
6745, 66fsumrecl 15619 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) ∈ ℝ)
68 omeiunltfirp.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ+)
6968rpred 12957 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
7069adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
7167, 70readdcld 11184 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
7271rexrd 11205 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
7372adantr 481 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
74 simpr 485 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
7565, 40fmptd 7062 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,)+∞))
7645, 75sge0fsum 44618 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘))
77 eqidd 2737 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
78 2fveq3 6847 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
7978adantl 482 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) ∧ 𝑛 = 𝑘) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
80 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → 𝑘𝑧)
81 fvexd 6857 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑂‘(𝐸𝑘)) ∈ V)
8277, 79, 80, 81fvmptd 6955 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = (𝑂‘(𝐸𝑘)))
8382sumeq2dv 15588 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = Σ𝑘𝑧 (𝑂‘(𝐸𝑘)))
84 2fveq3 6847 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑂‘(𝐸𝑘)) = (𝑂‘(𝐸𝑛)))
8584cbvsumv 15581 . . . . . . . . . . . 12 Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛))
8685a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
8776, 83, 863eqtrd 2780 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
8868adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ+)
8967, 88ltaddrpd 12990 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9087, 89eqbrtrd 5127 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9190adantr 481 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9229, 43, 73, 74, 91xrlttrd 13078 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9320, 27, 92syl2anc 584 . . . . . 6 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9493ex 413 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9594adantlr 713 . . . 4 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9695reximdva 3165 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9719, 96mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
98 simpl 483 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝜑)
99 simpr 485 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
1002a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
101100, 14sge0repnf 44617 . . . . 5 (𝜑 → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
102101adantr 481 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
10399, 102mpbird 256 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
104 nfv 1917 . . . . . 6 𝑛𝜑
105 nfcv 2907 . . . . . . . 8 𝑛Σ^
106 nfmpt1 5213 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
107105, 106nffv 6852 . . . . . . 7 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
108 nfcv 2907 . . . . . . 7 𝑛
109107, 108nfel 2921 . . . . . 6 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ
110104, 109nfan 1902 . . . . 5 𝑛(𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
1112a1i 11 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑍 ∈ V)
11212adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
11368adantr 481 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑌 ∈ ℝ+)
114 simpr 485 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
115110, 111, 112, 113, 114sge0ltfirpmpt 44639 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
11617ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
117114ad2antrr 724 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
11871ad4ant13 749 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
119 nfcv 2907 . . . . . . . . 9 𝑛𝐸
120104, 119, 4, 6, 1, 7omeiunle 44748 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
121120ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
122 simpr 485 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
123 simpll 765 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝜑)
124 2fveq3 6847 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑚)))
125124cbvmptv 5218 . . . . . . . . . . . . . . 15 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))
126125fveq2i 6845 . . . . . . . . . . . . . 14 ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))))
127126eleq1i 2828 . . . . . . . . . . . . 13 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
128127biimpi 215 . . . . . . . . . . . 12 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
129128ad2antlr 725 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
130 simpr 485 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
13144adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
13265adantllr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
133131, 132sge0fsummpt 44621 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
134123, 129, 130, 133syl21anc 836 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
135134oveq1d 7372 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
136135adantr 481 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
137122, 136breqtrd 5131 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
138116, 117, 118, 121, 137lelttrd 11313 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
139138ex 413 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
140139reximdva 3165 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
141115, 140mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
14298, 103, 141syl2anc 584 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
14397, 142pm2.61dan 811 1 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560   cuni 4865   ciun 4954   class class class wbr 5105  cmpt 5188  dom cdm 5633  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  cr 11050  0cc0 11051   + caddc 11054  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cuz 12763  +crp 12915  [,)cico 13266  [,]cicc 13267  Σcsu 15570  Σ^csumge0 44593  OutMeascome 44720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-sumge0 44594  df-ome 44721
This theorem is referenced by:  carageniuncllem2  44753
  Copyright terms: Public domain W3C validator