Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunltfirp Structured version   Visualization version   GIF version

Theorem omeiunltfirp 42800
Description: If the outer measure of a countable union is not +∞, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunltfirp.o (𝜑𝑂 ∈ OutMeas)
omeiunltfirp.x 𝑋 = dom 𝑂
omeiunltfirp.z 𝑍 = (ℤ𝑁)
omeiunltfirp.e (𝜑𝐸:𝑍⟶𝒫 𝑋)
omeiunltfirp.re (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
omeiunltfirp.y (𝜑𝑌 ∈ ℝ+)
Assertion
Ref Expression
omeiunltfirp (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Distinct variable groups:   𝑛,𝐸,𝑧   𝑛,𝑂,𝑧   𝑛,𝑋   𝑧,𝑌   𝑛,𝑍,𝑧   𝜑,𝑛,𝑧
Allowed substitution hints:   𝑁(𝑧,𝑛)   𝑋(𝑧)   𝑌(𝑛)

Proof of Theorem omeiunltfirp
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeiunltfirp.z . . . . . 6 𝑍 = (ℤ𝑁)
21fvexi 6683 . . . . 5 𝑍 ∈ V
32a1i 11 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝑍 ∈ V)
4 omeiunltfirp.o . . . . . . . 8 (𝜑𝑂 ∈ OutMeas)
54adantr 483 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑂 ∈ OutMeas)
6 omeiunltfirp.x . . . . . . 7 𝑋 = dom 𝑂
7 omeiunltfirp.e . . . . . . . . 9 (𝜑𝐸:𝑍⟶𝒫 𝑋)
87ffvelrnda 6850 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝒫 𝑋)
9 fvex 6682 . . . . . . . . 9 (𝐸𝑛) ∈ V
109elpw 4542 . . . . . . . 8 ((𝐸𝑛) ∈ 𝒫 𝑋 ↔ (𝐸𝑛) ⊆ 𝑋)
118, 10sylib 220 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑋)
125, 6, 11omecl 42784 . . . . . 6 ((𝜑𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
13 eqid 2821 . . . . . 6 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
1412, 13fmptd 6877 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
1514adantr 483 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
16 simpr 487 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
17 omeiunltfirp.re . . . . 5 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
1817adantr 483 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
193, 15, 16, 18sge0pnffigt 42677 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
20 simpl 485 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)))
21 simpr 487 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)))
22 elpwinss 41309 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
2322resmptd 5907 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → ((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
2423fveq2d 6673 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2524adantr 483 . . . . . . . . 9 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) = (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2621, 25breqtrd 5091 . . . . . . . 8 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2726adantll 712 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
2817rexrd 10690 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
2928ad2antrr 724 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
30 simpr 487 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
314ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
327ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝐸:𝑍⟶𝒫 𝑋)
3322adantr 483 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
34 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
3533, 34sseldd 3967 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
3635adantll 712 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
3732, 36ffvelrnd 6851 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ∈ 𝒫 𝑋)
3837, 10sylib 220 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑋)
3931, 6, 38omecl 42784 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
40 eqid 2821 . . . . . . . . . . 11 (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))
4139, 40fmptd 6877 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,]+∞))
4230, 41sge0xrcl 42666 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
4342adantr 483 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
44 elinel2 4172 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
4544adantl 484 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
46 rge0ssre 12843 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
47 0xr 10687 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4847a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ∈ ℝ*)
49 pnfxr 10694 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → +∞ ∈ ℝ*)
5131, 6, 38omexrcl 42788 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ*)
52 iccgelb 12792 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐸𝑛)))
5348, 50, 39, 52syl3anc 1367 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 0 ≤ (𝑂‘(𝐸𝑛)))
5411ralrimiva 3182 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
55 iunss 4968 . . . . . . . . . . . . . . . . . 18 ( 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5654, 55sylibr 236 . . . . . . . . . . . . . . . . 17 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5756ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
5831, 6, 57omexrcl 42788 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
59 ssiun2 4970 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6036, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
6131, 6, 57, 60omessle 42779 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ≤ (𝑂 𝑛𝑍 (𝐸𝑛)))
6217ltpnfd 12515 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6362ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂 𝑛𝑍 (𝐸𝑛)) < +∞)
6451, 58, 50, 61, 63xrlelttrd 12552 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) < +∞)
6548, 50, 51, 53, 64elicod 12786 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
6646, 65sseldi 3964 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ ℝ)
6745, 66fsumrecl 15090 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) ∈ ℝ)
68 omeiunltfirp.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ+)
6968rpred 12430 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
7069adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
7167, 70readdcld 10669 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
7271rexrd 10690 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
7372adantr 483 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ*)
74 simpr 487 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))))
7565, 40fmptd 6877 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))):𝑧⟶(0[,)+∞))
7645, 75sge0fsum 42668 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘))
77 eqidd 2822 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))
78 2fveq3 6674 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
7978adantl 484 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) ∧ 𝑛 = 𝑘) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑘)))
80 simpr 487 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → 𝑘𝑧)
81 fvexd 6684 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → (𝑂‘(𝐸𝑘)) ∈ V)
8277, 79, 80, 81fvmptd 6774 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑧) → ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = (𝑂‘(𝐸𝑘)))
8382sumeq2dv 15059 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 ((𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))‘𝑘) = Σ𝑘𝑧 (𝑂‘(𝐸𝑘)))
84 2fveq3 6674 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑂‘(𝐸𝑘)) = (𝑂‘(𝐸𝑛)))
8584cbvsumv 15052 . . . . . . . . . . . 12 Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛))
8685a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑧 (𝑂‘(𝐸𝑘)) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
8776, 83, 863eqtrd 2860 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
8868adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ+)
8967, 88ltaddrpd 12463 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9087, 89eqbrtrd 5087 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9190adantr 483 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9229, 43, 73, 74, 91xrlttrd 12551 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛))))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9320, 27, 92syl2anc 586 . . . . . 6 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧))) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
9493ex 415 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9594adantlr 713 . . . 4 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9695reximdva 3274 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ^‘((𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) ↾ 𝑧)) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
9719, 96mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
98 simpl 485 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → 𝜑)
99 simpr 487 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞)
1002a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
101100, 14sge0repnf 42667 . . . . 5 (𝜑 → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
102101adantr 483 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞))
10399, 102mpbird 259 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
104 nfv 1911 . . . . . 6 𝑛𝜑
105 nfcv 2977 . . . . . . . 8 𝑛Σ^
106 nfmpt1 5163 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
107105, 106nffv 6679 . . . . . . 7 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
108 nfcv 2977 . . . . . . 7 𝑛
109107, 108nfel 2992 . . . . . 6 𝑛^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ
110104, 109nfan 1896 . . . . 5 𝑛(𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
1112a1i 11 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑍 ∈ V)
11212adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
11368adantr 483 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → 𝑌 ∈ ℝ+)
114 simpr 487 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
115110, 111, 112, 113, 114sge0ltfirpmpt 42689 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
11617ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ)
117114ad2antrr 724 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ)
11871ad4ant13 749 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌) ∈ ℝ)
119 nfcv 2977 . . . . . . . . 9 𝑛𝐸
120104, 119, 4, 6, 1, 7omeiunle 42798 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
121120ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
122 simpr 487 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌))
123 simpll 765 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝜑)
124 2fveq3 6674 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸𝑚)))
125124cbvmptv 5168 . . . . . . . . . . . . . . 15 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))
126125fveq2i 6672 . . . . . . . . . . . . . 14 ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))))
127126eleq1i 2903 . . . . . . . . . . . . 13 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ ↔ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
128127biimpi 218 . . . . . . . . . . . 12 ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
129128ad2antlr 725 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ)
130 simpr 487 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ (𝒫 𝑍 ∩ Fin))
13144adantl 484 . . . . . . . . . . . 12 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
13265adantllr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘(𝐸𝑛)) ∈ (0[,)+∞))
133131, 132sge0fsummpt 42671 . . . . . . . . . . 11 (((𝜑 ∧ (Σ^‘(𝑚𝑍 ↦ (𝑂‘(𝐸𝑚)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
134123, 129, 130, 133syl21anc 835 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) = Σ𝑛𝑧 (𝑂‘(𝐸𝑛)))
135134oveq1d 7170 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
136135adantr 483 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
137122, 136breqtrd 5091 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
138116, 117, 118, 121, 137lelttrd 10797 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
139138ex 415 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → (𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
140139reximdva 3274 . . . 4 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) < ((Σ^‘(𝑛𝑧 ↦ (𝑂‘(𝐸𝑛)))) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌)))
141115, 140mpd 15 . . 3 ((𝜑 ∧ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
14298, 103, 141syl2anc 586 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) = +∞) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
14397, 142pm2.61dan 811 1 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐸𝑛)) < (Σ𝑛𝑧 (𝑂‘(𝐸𝑛)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  cin 3934  wss 3935  𝒫 cpw 4538   cuni 4837   ciun 4918   class class class wbr 5065  cmpt 5145  dom cdm 5554  cres 5556  wf 6350  cfv 6354  (class class class)co 7155  Fincfn 8508  cr 10535  0cc0 10536   + caddc 10539  +∞cpnf 10671  *cxr 10673   < clt 10674  cle 10675  cuz 12242  +crp 12388  [,)cico 12739  [,]cicc 12740  Σcsu 15041  Σ^csumge0 42643  OutMeascome 42770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-ac2 9884  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-card 9367  df-acn 9370  df-ac 9541  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-sumge0 42644  df-ome 42771
This theorem is referenced by:  carageniuncllem2  42803
  Copyright terms: Public domain W3C validator