| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0lefimpt | Structured version Visualization version GIF version | ||
| Description: A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| sge0lefimpt.xph | ⊢ Ⅎ𝑥𝜑 |
| sge0lefimpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0lefimpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| sge0lefimpt.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| sge0lefimpt | ⊢ (𝜑 → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0lefimpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0lefimpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | sge0lefimpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7051 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 6 | sge0lefimpt.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 7 | 1, 5, 6 | sge0lefi 46389 | . 2 ⊢ (𝜑 → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) ≤ 𝐶)) |
| 8 | elpwinss 45037 | . . . . . . 7 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
| 9 | 8 | resmptd 5991 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦) = (𝑥 ∈ 𝑦 ↦ 𝐵)) |
| 10 | 9 | fveq2d 6826 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵))) |
| 11 | 10 | breq1d 5102 | . . . 4 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) ≤ 𝐶 ↔ (Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) ≤ 𝐶)) |
| 12 | 11 | ralbiia 3073 | . . 3 ⊢ (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) ≤ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) ≤ 𝐶) |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑦)) ≤ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) ≤ 𝐶)) |
| 14 | 7, 13 | bitrd 279 | 1 ⊢ (𝜑 → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∩ cin 3902 𝒫 cpw 4551 class class class wbr 5092 ↦ cmpt 5173 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 0cc0 11009 +∞cpnf 11146 ℝ*cxr 11148 ≤ cle 11150 [,]cicc 13251 Σ^csumge0 46353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-sumge0 46354 |
| This theorem is referenced by: sge0isum 46418 sge0xaddlem2 46425 |
| Copyright terms: Public domain | W3C validator |