Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnffigt Structured version   Visualization version   GIF version

Theorem sge0pnffigt 43824
Description: If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pnffigt.x (𝜑𝑋𝑉)
sge0pnffigt.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0pnffigt.pnf (𝜑 → (Σ^𝐹) = +∞)
sge0pnffigt.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
sge0pnffigt (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0pnffigt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0pnffigt.y . . 3 (𝜑𝑌 ∈ ℝ)
2 sge0pnffigt.x . . . . . 6 (𝜑𝑋𝑉)
3 sge0pnffigt.f . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
42, 3sge0sup 43819 . . . . 5 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
5 sge0pnffigt.pnf . . . . 5 (𝜑 → (Σ^𝐹) = +∞)
64, 5eqtr3d 2780 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
7 vex 3426 . . . . . . . . 9 𝑥 ∈ V
87a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ V)
93adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
10 elpwinss 42486 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
1110adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
129, 11fssresd 6625 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
138, 12sge0xrcl 43813 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1413ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
15 eqid 2738 . . . . . . 7 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
1615rnmptss 6978 . . . . . 6 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
1714, 16syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
18 supxrunb2 12983 . . . . 5 (ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞))
1917, 18syl 17 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞))
206, 19mpbird 256 . . 3 (𝜑 → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧)
21 breq1 5073 . . . . 5 (𝑦 = 𝑌 → (𝑦 < 𝑧𝑌 < 𝑧))
2221rexbidv 3225 . . . 4 (𝑦 = 𝑌 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧))
2322rspcva 3550 . . 3 ((𝑌 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧)
241, 20, 23syl2anc 583 . 2 (𝜑 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧)
25 vex 3426 . . . . . . . 8 𝑧 ∈ V
2615elrnmpt 5854 . . . . . . . 8 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥))))
2725, 26ax-mp 5 . . . . . . 7 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
2827biimpi 215 . . . . . 6 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
29283ad2ant2 1132 . . . . 5 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
30 nfv 1918 . . . . . . 7 𝑥𝜑
31 nfcv 2906 . . . . . . . 8 𝑥𝑧
32 nfmpt1 5178 . . . . . . . . 9 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3332nfrn 5850 . . . . . . . 8 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3431, 33nfel 2920 . . . . . . 7 𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
35 nfv 1918 . . . . . . 7 𝑥 𝑌 < 𝑧
3630, 34, 35nf3an 1905 . . . . . 6 𝑥(𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧)
37 simpl 482 . . . . . . . . . . 11 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑌 < 𝑧)
38 simpr 484 . . . . . . . . . . . 12 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑧 = (Σ^‘(𝐹𝑥)))
3938breq2d 5082 . . . . . . . . . . 11 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → (𝑌 < 𝑧𝑌 < (Σ^‘(𝐹𝑥))))
4037, 39mpbid 231 . . . . . . . . . 10 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑌 < (Σ^‘(𝐹𝑥)))
4140ex 412 . . . . . . . . 9 (𝑌 < 𝑧 → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥))))
4241adantl 481 . . . . . . . 8 ((𝜑𝑌 < 𝑧) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥))))
4342a1d 25 . . . . . . 7 ((𝜑𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥)))))
44433adant2 1129 . . . . . 6 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥)))))
4536, 44reximdai 3239 . . . . 5 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥))))
4629, 45mpd 15 . . . 4 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
47463exp 1117 . . 3 (𝜑 → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → (𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))))
4847rexlimdv 3211 . 2 (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥))))
4924, 48mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  ran crn 5581  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  [,]cicc 13011  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  sge0pnffigtmpt  43868  omeiunltfirp  43947
  Copyright terms: Public domain W3C validator