Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnffigt Structured version   Visualization version   GIF version

Theorem sge0pnffigt 46387
Description: If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pnffigt.x (𝜑𝑋𝑉)
sge0pnffigt.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0pnffigt.pnf (𝜑 → (Σ^𝐹) = +∞)
sge0pnffigt.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
sge0pnffigt (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0pnffigt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0pnffigt.y . . 3 (𝜑𝑌 ∈ ℝ)
2 sge0pnffigt.x . . . . . 6 (𝜑𝑋𝑉)
3 sge0pnffigt.f . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
42, 3sge0sup 46382 . . . . 5 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
5 sge0pnffigt.pnf . . . . 5 (𝜑 → (Σ^𝐹) = +∞)
64, 5eqtr3d 2766 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
7 vex 3448 . . . . . . . . 9 𝑥 ∈ V
87a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ V)
93adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
10 elpwinss 45036 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
1110adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
129, 11fssresd 6709 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
138, 12sge0xrcl 46376 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1413ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
15 eqid 2729 . . . . . . 7 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
1615rnmptss 7077 . . . . . 6 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
1714, 16syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
18 supxrunb2 13256 . . . . 5 (ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞))
1917, 18syl 17 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞))
206, 19mpbird 257 . . 3 (𝜑 → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧)
21 breq1 5105 . . . . 5 (𝑦 = 𝑌 → (𝑦 < 𝑧𝑌 < 𝑧))
2221rexbidv 3157 . . . 4 (𝑦 = 𝑌 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧))
2322rspcva 3583 . . 3 ((𝑌 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧)
241, 20, 23syl2anc 584 . 2 (𝜑 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧)
25 vex 3448 . . . . . . . 8 𝑧 ∈ V
2615elrnmpt 5911 . . . . . . . 8 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥))))
2725, 26ax-mp 5 . . . . . . 7 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
2827biimpi 216 . . . . . 6 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
29283ad2ant2 1134 . . . . 5 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
30 nfv 1914 . . . . . . 7 𝑥𝜑
31 nfcv 2891 . . . . . . . 8 𝑥𝑧
32 nfmpt1 5201 . . . . . . . . 9 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3332nfrn 5905 . . . . . . . 8 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3431, 33nfel 2906 . . . . . . 7 𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
35 nfv 1914 . . . . . . 7 𝑥 𝑌 < 𝑧
3630, 34, 35nf3an 1901 . . . . . 6 𝑥(𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧)
37 simpl 482 . . . . . . . . . . 11 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑌 < 𝑧)
38 simpr 484 . . . . . . . . . . . 12 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑧 = (Σ^‘(𝐹𝑥)))
3938breq2d 5114 . . . . . . . . . . 11 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → (𝑌 < 𝑧𝑌 < (Σ^‘(𝐹𝑥))))
4037, 39mpbid 232 . . . . . . . . . 10 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑌 < (Σ^‘(𝐹𝑥)))
4140ex 412 . . . . . . . . 9 (𝑌 < 𝑧 → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥))))
4241adantl 481 . . . . . . . 8 ((𝜑𝑌 < 𝑧) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥))))
4342a1d 25 . . . . . . 7 ((𝜑𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥)))))
44433adant2 1131 . . . . . 6 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥)))))
4536, 44reximdai 3237 . . . . 5 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥))))
4629, 45mpd 15 . . . 4 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
47463exp 1119 . . 3 (𝜑 → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → (𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))))
4847rexlimdv 3132 . 2 (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥))))
4924, 48mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  ran crn 5632  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  supcsup 9367  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  [,]cicc 13285  Σ^csumge0 46353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-sumge0 46354
This theorem is referenced by:  sge0pnffigtmpt  46431  omeiunltfirp  46510
  Copyright terms: Public domain W3C validator