Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnffigt Structured version   Visualization version   GIF version

Theorem sge0pnffigt 46504
Description: If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pnffigt.x (𝜑𝑋𝑉)
sge0pnffigt.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0pnffigt.pnf (𝜑 → (Σ^𝐹) = +∞)
sge0pnffigt.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
sge0pnffigt (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0pnffigt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0pnffigt.y . . 3 (𝜑𝑌 ∈ ℝ)
2 sge0pnffigt.x . . . . . 6 (𝜑𝑋𝑉)
3 sge0pnffigt.f . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
42, 3sge0sup 46499 . . . . 5 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
5 sge0pnffigt.pnf . . . . 5 (𝜑 → (Σ^𝐹) = +∞)
64, 5eqtr3d 2768 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
7 vex 3440 . . . . . . . . 9 𝑥 ∈ V
87a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ V)
93adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
10 elpwinss 45156 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
1110adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
129, 11fssresd 6690 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
138, 12sge0xrcl 46493 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1413ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
15 eqid 2731 . . . . . . 7 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
1615rnmptss 7056 . . . . . 6 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
1714, 16syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
18 supxrunb2 13219 . . . . 5 (ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞))
1917, 18syl 17 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞))
206, 19mpbird 257 . . 3 (𝜑 → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧)
21 breq1 5092 . . . . 5 (𝑦 = 𝑌 → (𝑦 < 𝑧𝑌 < 𝑧))
2221rexbidv 3156 . . . 4 (𝑦 = 𝑌 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧))
2322rspcva 3570 . . 3 ((𝑌 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧)
241, 20, 23syl2anc 584 . 2 (𝜑 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧)
25 vex 3440 . . . . . . . 8 𝑧 ∈ V
2615elrnmpt 5897 . . . . . . . 8 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥))))
2725, 26ax-mp 5 . . . . . . 7 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
2827biimpi 216 . . . . . 6 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
29283ad2ant2 1134 . . . . 5 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
30 nfv 1915 . . . . . . 7 𝑥𝜑
31 nfcv 2894 . . . . . . . 8 𝑥𝑧
32 nfmpt1 5188 . . . . . . . . 9 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3332nfrn 5891 . . . . . . . 8 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3431, 33nfel 2909 . . . . . . 7 𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
35 nfv 1915 . . . . . . 7 𝑥 𝑌 < 𝑧
3630, 34, 35nf3an 1902 . . . . . 6 𝑥(𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧)
37 simpl 482 . . . . . . . . . . 11 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑌 < 𝑧)
38 simpr 484 . . . . . . . . . . . 12 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑧 = (Σ^‘(𝐹𝑥)))
3938breq2d 5101 . . . . . . . . . . 11 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → (𝑌 < 𝑧𝑌 < (Σ^‘(𝐹𝑥))))
4037, 39mpbid 232 . . . . . . . . . 10 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑌 < (Σ^‘(𝐹𝑥)))
4140ex 412 . . . . . . . . 9 (𝑌 < 𝑧 → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥))))
4241adantl 481 . . . . . . . 8 ((𝜑𝑌 < 𝑧) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥))))
4342a1d 25 . . . . . . 7 ((𝜑𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥)))))
44433adant2 1131 . . . . . 6 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥)))))
4536, 44reximdai 3234 . . . . 5 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥))))
4629, 45mpd 15 . . . 4 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
47463exp 1119 . . 3 (𝜑 → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → (𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))))
4847rexlimdv 3131 . 2 (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥))))
4924, 48mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4547   class class class wbr 5089  cmpt 5170  ran crn 5615  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  cr 11005  0cc0 11006  +∞cpnf 11143  *cxr 11145   < clt 11146  [,]cicc 13248  Σ^csumge0 46470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46471
This theorem is referenced by:  sge0pnffigtmpt  46548  omeiunltfirp  46627
  Copyright terms: Public domain W3C validator