Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnffigt Structured version   Visualization version   GIF version

Theorem sge0pnffigt 46352
Description: If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pnffigt.x (𝜑𝑋𝑉)
sge0pnffigt.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0pnffigt.pnf (𝜑 → (Σ^𝐹) = +∞)
sge0pnffigt.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
sge0pnffigt (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0pnffigt
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0pnffigt.y . . 3 (𝜑𝑌 ∈ ℝ)
2 sge0pnffigt.x . . . . . 6 (𝜑𝑋𝑉)
3 sge0pnffigt.f . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
42, 3sge0sup 46347 . . . . 5 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
5 sge0pnffigt.pnf . . . . 5 (𝜑 → (Σ^𝐹) = +∞)
64, 5eqtr3d 2777 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
7 vex 3482 . . . . . . . . 9 𝑥 ∈ V
87a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ V)
93adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
10 elpwinss 44989 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
1110adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
129, 11fssresd 6776 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
138, 12sge0xrcl 46341 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1413ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
15 eqid 2735 . . . . . . 7 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
1615rnmptss 7143 . . . . . 6 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
1714, 16syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
18 supxrunb2 13359 . . . . 5 (ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞))
1917, 18syl 17 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞))
206, 19mpbird 257 . . 3 (𝜑 → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧)
21 breq1 5151 . . . . 5 (𝑦 = 𝑌 → (𝑦 < 𝑧𝑌 < 𝑧))
2221rexbidv 3177 . . . 4 (𝑦 = 𝑌 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧 ↔ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧))
2322rspcva 3620 . . 3 ((𝑌 ∈ ℝ ∧ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦 < 𝑧) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧)
241, 20, 23syl2anc 584 . 2 (𝜑 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧)
25 vex 3482 . . . . . . . 8 𝑧 ∈ V
2615elrnmpt 5972 . . . . . . . 8 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥))))
2725, 26ax-mp 5 . . . . . . 7 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
2827biimpi 216 . . . . . 6 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
29283ad2ant2 1133 . . . . 5 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)))
30 nfv 1912 . . . . . . 7 𝑥𝜑
31 nfcv 2903 . . . . . . . 8 𝑥𝑧
32 nfmpt1 5256 . . . . . . . . 9 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3332nfrn 5966 . . . . . . . 8 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3431, 33nfel 2918 . . . . . . 7 𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
35 nfv 1912 . . . . . . 7 𝑥 𝑌 < 𝑧
3630, 34, 35nf3an 1899 . . . . . 6 𝑥(𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧)
37 simpl 482 . . . . . . . . . . 11 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑌 < 𝑧)
38 simpr 484 . . . . . . . . . . . 12 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑧 = (Σ^‘(𝐹𝑥)))
3938breq2d 5160 . . . . . . . . . . 11 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → (𝑌 < 𝑧𝑌 < (Σ^‘(𝐹𝑥))))
4037, 39mpbid 232 . . . . . . . . . 10 ((𝑌 < 𝑧𝑧 = (Σ^‘(𝐹𝑥))) → 𝑌 < (Σ^‘(𝐹𝑥)))
4140ex 412 . . . . . . . . 9 (𝑌 < 𝑧 → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥))))
4241adantl 481 . . . . . . . 8 ((𝜑𝑌 < 𝑧) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥))))
4342a1d 25 . . . . . . 7 ((𝜑𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥)))))
44433adant2 1130 . . . . . 6 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 = (Σ^‘(𝐹𝑥)) → 𝑌 < (Σ^‘(𝐹𝑥)))))
4536, 44reximdai 3259 . . . . 5 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 = (Σ^‘(𝐹𝑥)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥))))
4629, 45mpd 15 . . . 4 ((𝜑𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
47463exp 1118 . . 3 (𝜑 → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → (𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))))
4847rexlimdv 3151 . 2 (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥))))
4924, 48mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  ran crn 5690  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  supcsup 9478  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292   < clt 11293  [,]cicc 13387  Σ^csumge0 46318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319
This theorem is referenced by:  sge0pnffigtmpt  46396  omeiunltfirp  46475
  Copyright terms: Public domain W3C validator