Step | Hyp | Ref
| Expression |
1 | | sge0pnffigt.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ ℝ) |
2 | | sge0pnffigt.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
3 | | sge0pnffigt.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
4 | 2, 3 | sge0sup 43819 |
. . . . 5
⊢ (𝜑 →
(Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, <
)) |
5 | | sge0pnffigt.pnf |
. . . . 5
⊢ (𝜑 →
(Σ^‘𝐹) = +∞) |
6 | 4, 5 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, < ) =
+∞) |
7 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
8 | 7 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ V) |
9 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
10 | | elpwinss 42486 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ⊆ 𝑋) |
11 | 10 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ⊆ 𝑋) |
12 | 9, 11 | fssresd 6625 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥⟶(0[,]+∞)) |
13 | 8, 12 | sge0xrcl 43813 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐹 ↾ 𝑥)) ∈
ℝ*) |
14 | 13 | ralrimiva 3107 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩
Fin)(Σ^‘(𝐹 ↾ 𝑥)) ∈
ℝ*) |
15 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) |
16 | 15 | rnmptss 6978 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝒫 𝑋 ∩
Fin)(Σ^‘(𝐹 ↾ 𝑥)) ∈ ℝ* → ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ⊆
ℝ*) |
17 | 14, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ⊆
ℝ*) |
18 | | supxrunb2 12983 |
. . . . 5
⊢ (ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ⊆ ℝ* →
(∀𝑦 ∈ ℝ
∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, < ) =
+∞)) |
19 | 17, 18 | syl 17 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))𝑦 < 𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))), ℝ*, < ) =
+∞)) |
20 | 6, 19 | mpbird 256 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))𝑦 < 𝑧) |
21 | | breq1 5073 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑦 < 𝑧 ↔ 𝑌 < 𝑧)) |
22 | 21 | rexbidv 3225 |
. . . 4
⊢ (𝑦 = 𝑌 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))𝑦 < 𝑧 ↔ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))𝑌 < 𝑧)) |
23 | 22 | rspcva 3550 |
. . 3
⊢ ((𝑌 ∈ ℝ ∧
∀𝑦 ∈ ℝ
∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))𝑦 < 𝑧) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))𝑌 < 𝑧) |
24 | 1, 20, 23 | syl2anc 583 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))𝑌 < 𝑧) |
25 | | vex 3426 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
26 | 15 | elrnmpt 5854 |
. . . . . . . 8
⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 =
(Σ^‘(𝐹 ↾ 𝑥)))) |
27 | 25, 26 | ax-mp 5 |
. . . . . . 7
⊢ (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 =
(Σ^‘(𝐹 ↾ 𝑥))) |
28 | 27 | biimpi 215 |
. . . . . 6
⊢ (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 =
(Σ^‘(𝐹 ↾ 𝑥))) |
29 | 28 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 =
(Σ^‘(𝐹 ↾ 𝑥))) |
30 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑥𝜑 |
31 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑧 |
32 | | nfmpt1 5178 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) |
33 | 32 | nfrn 5850 |
. . . . . . . 8
⊢
Ⅎ𝑥ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) |
34 | 31, 33 | nfel 2920 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) |
35 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑌 < 𝑧 |
36 | 30, 34, 35 | nf3an 1905 |
. . . . . 6
⊢
Ⅎ𝑥(𝜑 ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ∧ 𝑌 < 𝑧) |
37 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑌 < 𝑧 ∧ 𝑧 =
(Σ^‘(𝐹 ↾ 𝑥))) → 𝑌 < 𝑧) |
38 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑌 < 𝑧 ∧ 𝑧 =
(Σ^‘(𝐹 ↾ 𝑥))) → 𝑧 =
(Σ^‘(𝐹 ↾ 𝑥))) |
39 | 38 | breq2d 5082 |
. . . . . . . . . . 11
⊢ ((𝑌 < 𝑧 ∧ 𝑧 =
(Σ^‘(𝐹 ↾ 𝑥))) → (𝑌 < 𝑧 ↔ 𝑌 <
(Σ^‘(𝐹 ↾ 𝑥)))) |
40 | 37, 39 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑌 < 𝑧 ∧ 𝑧 =
(Σ^‘(𝐹 ↾ 𝑥))) → 𝑌 <
(Σ^‘(𝐹 ↾ 𝑥))) |
41 | 40 | ex 412 |
. . . . . . . . 9
⊢ (𝑌 < 𝑧 → (𝑧 =
(Σ^‘(𝐹 ↾ 𝑥)) → 𝑌 <
(Σ^‘(𝐹 ↾ 𝑥)))) |
42 | 41 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 < 𝑧) → (𝑧 =
(Σ^‘(𝐹 ↾ 𝑥)) → 𝑌 <
(Σ^‘(𝐹 ↾ 𝑥)))) |
43 | 42 | a1d 25 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 =
(Σ^‘(𝐹 ↾ 𝑥)) → 𝑌 <
(Σ^‘(𝐹 ↾ 𝑥))))) |
44 | 43 | 3adant2 1129 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ∧ 𝑌 < 𝑧) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑧 =
(Σ^‘(𝐹 ↾ 𝑥)) → 𝑌 <
(Σ^‘(𝐹 ↾ 𝑥))))) |
45 | 36, 44 | reximdai 3239 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ∧ 𝑌 < 𝑧) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑧 =
(Σ^‘(𝐹 ↾ 𝑥)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 <
(Σ^‘(𝐹 ↾ 𝑥)))) |
46 | 29, 45 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) ∧ 𝑌 < 𝑧) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 <
(Σ^‘(𝐹 ↾ 𝑥))) |
47 | 46 | 3exp 1117 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥))) → (𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 <
(Σ^‘(𝐹 ↾ 𝑥))))) |
48 | 47 | rexlimdv 3211 |
. 2
⊢ (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦
(Σ^‘(𝐹 ↾ 𝑥)))𝑌 < 𝑧 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 <
(Σ^‘(𝐹 ↾ 𝑥)))) |
49 | 24, 48 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 <
(Σ^‘(𝐹 ↾ 𝑥))) |