Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0revalmpt | Structured version Visualization version GIF version |
Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0revalmpt.1 | ⊢ Ⅎ𝑥𝜑 |
sge0revalmpt.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0revalmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
sge0revalmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0revalmpt.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0revalmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0revalmpt.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
4 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 6991 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
6 | 1, 5 | sge0reval 43910 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < )) |
7 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | |
8 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
9 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑧𝑦 | |
10 | nfmpt1 5182 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
11 | nfcv 2907 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑧 | |
12 | 10, 11 | nffv 6784 | . . . . . . . 8 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) |
13 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) | |
14 | 7, 8, 9, 12, 13 | cbvsum 15407 | . . . . . . 7 ⊢ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) |
15 | 14 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
16 | nfv 1917 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin) | |
17 | 2, 16 | nfan 1902 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
18 | elpwinss 42597 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
19 | 18 | adantr 481 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
20 | simpr 485 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑦) | |
21 | 19, 20 | sseldd 3922 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
22 | 21 | adantll 711 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
23 | simpll 764 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝜑) | |
24 | 23, 22, 3 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝐵 ∈ (0[,)+∞)) |
25 | 4 | fvmpt2 6886 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (0[,)+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
26 | 22, 24, 25 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
27 | 26 | ex 413 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥 ∈ 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵)) |
28 | 17, 27 | ralrimi 3141 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
29 | sumeq2 15406 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵 → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) | |
30 | 28, 29 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) |
31 | 15, 30 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 𝐵) |
32 | 31 | mpteq2dva 5174 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
33 | 32 | rneqd 5847 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
34 | 33 | supeq1d 9205 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
35 | 6, 34 | eqtrd 2778 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 supcsup 9199 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 [,)cico 13081 Σcsu 15397 Σ^csumge0 43900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-ico 13085 df-icc 13086 df-fz 13240 df-seq 13722 df-sum 15398 df-sumge0 43901 |
This theorem is referenced by: sge0f1o 43920 sge0xaddlem1 43971 sge0xaddlem2 43972 sge0reuz 43985 |
Copyright terms: Public domain | W3C validator |