| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0revalmpt | Structured version Visualization version GIF version | ||
| Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0revalmpt.1 | ⊢ Ⅎ𝑥𝜑 |
| sge0revalmpt.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0revalmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| Ref | Expression |
|---|---|
| sge0revalmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0revalmpt.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0revalmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | sge0revalmpt.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
| 4 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7137 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
| 6 | 1, 5 | sge0reval 46387 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < )) |
| 7 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | |
| 8 | nfmpt1 5250 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 9 | nfcv 2905 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑧 | |
| 10 | 8, 9 | nffv 6916 | . . . . . . . 8 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) |
| 11 | nfcv 2905 | . . . . . . . 8 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) | |
| 12 | 7, 10, 11 | cbvsum 15731 | . . . . . . 7 ⊢ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
| 14 | nfv 1914 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin) | |
| 15 | 2, 14 | nfan 1899 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
| 16 | elpwinss 45054 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
| 17 | 16 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
| 18 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑦) | |
| 19 | 17, 18 | sseldd 3984 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
| 20 | 19 | adantll 714 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
| 21 | simpll 767 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝜑) | |
| 22 | 21, 20, 3 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝐵 ∈ (0[,)+∞)) |
| 23 | 4 | fvmpt2 7027 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (0[,)+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 24 | 20, 22, 23 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 25 | 24 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥 ∈ 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵)) |
| 26 | 15, 25 | ralrimi 3257 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 27 | sumeq2 15730 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵 → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) | |
| 28 | 26, 27 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) |
| 29 | 13, 28 | eqtrd 2777 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 𝐵) |
| 30 | 29 | mpteq2dva 5242 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
| 31 | 30 | rneqd 5949 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
| 32 | 31 | supeq1d 9486 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
| 33 | 6, 32 | eqtrd 2777 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ↦ cmpt 5225 ran crn 5686 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 supcsup 9480 0cc0 11155 +∞cpnf 11292 ℝ*cxr 11294 < clt 11295 [,)cico 13389 Σcsu 15722 Σ^csumge0 46377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-ico 13393 df-icc 13394 df-fz 13548 df-seq 14043 df-sum 15723 df-sumge0 46378 |
| This theorem is referenced by: sge0f1o 46397 sge0xaddlem1 46448 sge0xaddlem2 46449 sge0reuz 46462 |
| Copyright terms: Public domain | W3C validator |