Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0revalmpt | Structured version Visualization version GIF version |
Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0revalmpt.1 | ⊢ Ⅎ𝑥𝜑 |
sge0revalmpt.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0revalmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
sge0revalmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0revalmpt.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0revalmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0revalmpt.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
4 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 6891 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
6 | 1, 5 | sge0reval 43452 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < )) |
7 | fveq2 6674 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | |
8 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
9 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑧𝑦 | |
10 | nfmpt1 5128 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
11 | nfcv 2899 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑧 | |
12 | 10, 11 | nffv 6684 | . . . . . . . 8 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) |
13 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) | |
14 | 7, 8, 9, 12, 13 | cbvsum 15145 | . . . . . . 7 ⊢ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) |
15 | 14 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
16 | nfv 1921 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin) | |
17 | 2, 16 | nfan 1906 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
18 | elpwinss 42135 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
19 | 18 | adantr 484 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
20 | simpr 488 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑦) | |
21 | 19, 20 | sseldd 3878 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
22 | 21 | adantll 714 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
23 | simpll 767 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝜑) | |
24 | 23, 22, 3 | syl2anc 587 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝐵 ∈ (0[,)+∞)) |
25 | 4 | fvmpt2 6786 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (0[,)+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
26 | 22, 24, 25 | syl2anc 587 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
27 | 26 | ex 416 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥 ∈ 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵)) |
28 | 17, 27 | ralrimi 3128 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
29 | sumeq2 15144 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵 → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) | |
30 | 28, 29 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) |
31 | 15, 30 | eqtrd 2773 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 𝐵) |
32 | 31 | mpteq2dva 5125 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
33 | 32 | rneqd 5781 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
34 | 33 | supeq1d 8983 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
35 | 6, 34 | eqtrd 2773 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 Ⅎwnf 1790 ∈ wcel 2114 ∀wral 3053 ∩ cin 3842 ⊆ wss 3843 𝒫 cpw 4488 ↦ cmpt 5110 ran crn 5526 ‘cfv 6339 (class class class)co 7170 Fincfn 8555 supcsup 8977 0cc0 10615 +∞cpnf 10750 ℝ*cxr 10752 < clt 10753 [,)cico 12823 Σcsu 15135 Σ^csumge0 43442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-n0 11977 df-z 12063 df-uz 12325 df-ico 12827 df-icc 12828 df-fz 12982 df-seq 13461 df-sum 15136 df-sumge0 43443 |
This theorem is referenced by: sge0f1o 43462 sge0xaddlem1 43513 sge0xaddlem2 43514 sge0reuz 43527 |
Copyright terms: Public domain | W3C validator |