Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0revalmpt Structured version   Visualization version   GIF version

Theorem sge0revalmpt 43017
Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0revalmpt.1 𝑥𝜑
sge0revalmpt.2 (𝜑𝐴𝑉)
sge0revalmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0revalmpt (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem sge0revalmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sge0revalmpt.2 . . 3 (𝜑𝐴𝑉)
2 sge0revalmpt.1 . . . 4 𝑥𝜑
3 sge0revalmpt.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
4 eqid 2798 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6858 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,)+∞))
61, 5sge0reval 43011 . 2 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ))
7 fveq2 6645 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
8 nfcv 2955 . . . . . . . 8 𝑥𝑦
9 nfcv 2955 . . . . . . . 8 𝑧𝑦
10 nfmpt1 5128 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
11 nfcv 2955 . . . . . . . . 9 𝑥𝑧
1210, 11nffv 6655 . . . . . . . 8 𝑥((𝑥𝐴𝐵)‘𝑧)
13 nfcv 2955 . . . . . . . 8 𝑧((𝑥𝐴𝐵)‘𝑥)
147, 8, 9, 12, 13cbvsum 15044 . . . . . . 7 Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥)
1514a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥))
16 nfv 1915 . . . . . . . . 9 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1900 . . . . . . . 8 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
18 elpwinss 41683 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1918adantr 484 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑦𝐴)
20 simpr 488 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝑦)
2119, 20sseldd 3916 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2221adantll 713 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
23 simpll 766 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
2423, 22, 3syl2anc 587 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
254fvmpt2 6756 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ (0[,)+∞)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2622, 24, 25syl2anc 587 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2726ex 416 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦 → ((𝑥𝐴𝐵)‘𝑥) = 𝐵))
2817, 27ralrimi 3180 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
29 sumeq2 15043 . . . . . . 7 (∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵 → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
3028, 29syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
3115, 30eqtrd 2833 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 𝐵)
3231mpteq2dva 5125 . . . 4 (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3332rneqd 5772 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3433supeq1d 8894 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
356, 34eqtrd 2833 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wral 3106  cin 3880  wss 3881  𝒫 cpw 4497  cmpt 5110  ran crn 5520  cfv 6324  (class class class)co 7135  Fincfn 8492  supcsup 8888  0cc0 10526  +∞cpnf 10661  *cxr 10663   < clt 10664  [,)cico 12728  Σcsu 15034  Σ^csumge0 43001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-ico 12732  df-icc 12733  df-fz 12886  df-seq 13365  df-sum 15035  df-sumge0 43002
This theorem is referenced by:  sge0f1o  43021  sge0xaddlem1  43072  sge0xaddlem2  43073  sge0reuz  43086
  Copyright terms: Public domain W3C validator