| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0revalmpt | Structured version Visualization version GIF version | ||
| Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0revalmpt.1 | ⊢ Ⅎ𝑥𝜑 |
| sge0revalmpt.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0revalmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| Ref | Expression |
|---|---|
| sge0revalmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0revalmpt.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0revalmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | sge0revalmpt.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
| 4 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7071 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
| 6 | 1, 5 | sge0reval 46343 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < )) |
| 7 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | |
| 8 | nfmpt1 5201 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 9 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑧 | |
| 10 | 8, 9 | nffv 6850 | . . . . . . . 8 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) |
| 11 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) | |
| 12 | 7, 10, 11 | cbvsum 15637 | . . . . . . 7 ⊢ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
| 14 | nfv 1914 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin) | |
| 15 | 2, 14 | nfan 1899 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
| 16 | elpwinss 45016 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
| 17 | 16 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
| 18 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑦) | |
| 19 | 17, 18 | sseldd 3944 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
| 20 | 19 | adantll 714 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
| 21 | simpll 766 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝜑) | |
| 22 | 21, 20, 3 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝐵 ∈ (0[,)+∞)) |
| 23 | 4 | fvmpt2 6961 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (0[,)+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 24 | 20, 22, 23 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 25 | 24 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥 ∈ 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵)) |
| 26 | 15, 25 | ralrimi 3233 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 27 | sumeq2 15636 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵 → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) | |
| 28 | 26, 27 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) |
| 29 | 13, 28 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 𝐵) |
| 30 | 29 | mpteq2dva 5195 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
| 31 | 30 | rneqd 5891 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
| 32 | 31 | supeq1d 9373 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
| 33 | 6, 32 | eqtrd 2764 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 ↦ cmpt 5183 ran crn 5632 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 supcsup 9367 0cc0 11044 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 [,)cico 13284 Σcsu 15628 Σ^csumge0 46333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-ico 13288 df-icc 13289 df-fz 13445 df-seq 13943 df-sum 15629 df-sumge0 46334 |
| This theorem is referenced by: sge0f1o 46353 sge0xaddlem1 46404 sge0xaddlem2 46405 sge0reuz 46418 |
| Copyright terms: Public domain | W3C validator |