Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0revalmpt Structured version   Visualization version   GIF version

Theorem sge0revalmpt 42526
Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0revalmpt.1 𝑥𝜑
sge0revalmpt.2 (𝜑𝐴𝑉)
sge0revalmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0revalmpt (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem sge0revalmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sge0revalmpt.2 . . 3 (𝜑𝐴𝑉)
2 sge0revalmpt.1 . . . 4 𝑥𝜑
3 sge0revalmpt.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
4 eqid 2826 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6877 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,)+∞))
61, 5sge0reval 42520 . 2 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ))
7 fveq2 6667 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
8 nfcv 2982 . . . . . . . 8 𝑥𝑦
9 nfcv 2982 . . . . . . . 8 𝑧𝑦
10 nfmpt1 5161 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
11 nfcv 2982 . . . . . . . . 9 𝑥𝑧
1210, 11nffv 6677 . . . . . . . 8 𝑥((𝑥𝐴𝐵)‘𝑧)
13 nfcv 2982 . . . . . . . 8 𝑧((𝑥𝐴𝐵)‘𝑥)
147, 8, 9, 12, 13cbvsum 15042 . . . . . . 7 Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥)
1514a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥))
16 nfv 1908 . . . . . . . . 9 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1893 . . . . . . . 8 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
18 elpwinss 41176 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1918adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑦𝐴)
20 simpr 485 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝑦)
2119, 20sseldd 3972 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2221adantll 710 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
23 simpll 763 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
2423, 22, 3syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
254fvmpt2 6775 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ (0[,)+∞)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2622, 24, 25syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2726ex 413 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦 → ((𝑥𝐴𝐵)‘𝑥) = 𝐵))
2817, 27ralrimi 3221 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
29 sumeq2 15041 . . . . . . 7 (∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵 → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
3028, 29syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
3115, 30eqtrd 2861 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 𝐵)
3231mpteq2dva 5158 . . . 4 (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3332rneqd 5807 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3433supeq1d 8899 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
356, 34eqtrd 2861 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wnf 1777  wcel 2107  wral 3143  cin 3939  wss 3940  𝒫 cpw 4542  cmpt 5143  ran crn 5555  cfv 6352  (class class class)co 7148  Fincfn 8498  supcsup 8893  0cc0 10526  +∞cpnf 10661  *cxr 10663   < clt 10664  [,)cico 12730  Σcsu 15032  Σ^csumge0 42510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-ico 12734  df-icc 12735  df-fz 12883  df-seq 13360  df-sum 15033  df-sumge0 42511
This theorem is referenced by:  sge0f1o  42530  sge0xaddlem1  42581  sge0xaddlem2  42582  sge0reuz  42595
  Copyright terms: Public domain W3C validator