![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0revalmpt | Structured version Visualization version GIF version |
Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0revalmpt.1 | ⊢ Ⅎ𝑥𝜑 |
sge0revalmpt.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0revalmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
sge0revalmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0revalmpt.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0revalmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0revalmpt.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
4 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 7136 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
6 | 1, 5 | sge0reval 46327 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < )) |
7 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | |
8 | nfmpt1 5255 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | nfcv 2902 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑧 | |
10 | 8, 9 | nffv 6916 | . . . . . . . 8 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) |
11 | nfcv 2902 | . . . . . . . 8 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) | |
12 | 7, 10, 11 | cbvsum 15727 | . . . . . . 7 ⊢ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) |
13 | 12 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
14 | nfv 1911 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin) | |
15 | 2, 14 | nfan 1896 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
16 | elpwinss 44988 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) | |
17 | 16 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
18 | simpr 484 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑦) | |
19 | 17, 18 | sseldd 3995 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
20 | 19 | adantll 714 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝐴) |
21 | simpll 767 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝜑) | |
22 | 21, 20, 3 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝐵 ∈ (0[,)+∞)) |
23 | 4 | fvmpt2 7026 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (0[,)+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
24 | 20, 22, 23 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
25 | 24 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥 ∈ 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵)) |
26 | 15, 25 | ralrimi 3254 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
27 | sumeq2 15726 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵 → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = Σ𝑥 ∈ 𝑦 𝐵) |
29 | 13, 28 | eqtrd 2774 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) = Σ𝑥 ∈ 𝑦 𝐵) |
30 | 29 | mpteq2dva 5247 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
31 | 30 | rneqd 5951 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵)) |
32 | 31 | supeq1d 9483 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
33 | 6, 32 | eqtrd 2774 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 Ⅎwnf 1779 ∈ wcel 2105 ∀wral 3058 ∩ cin 3961 ⊆ wss 3962 𝒫 cpw 4604 ↦ cmpt 5230 ran crn 5689 ‘cfv 6562 (class class class)co 7430 Fincfn 8983 supcsup 9477 0cc0 11152 +∞cpnf 11289 ℝ*cxr 11291 < clt 11292 [,)cico 13385 Σcsu 15718 Σ^csumge0 46317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-ico 13389 df-icc 13390 df-fz 13544 df-seq 14039 df-sum 15719 df-sumge0 46318 |
This theorem is referenced by: sge0f1o 46337 sge0xaddlem1 46388 sge0xaddlem2 46389 sge0reuz 46402 |
Copyright terms: Public domain | W3C validator |