Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0revalmpt Structured version   Visualization version   GIF version

Theorem sge0revalmpt 46424
Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0revalmpt.1 𝑥𝜑
sge0revalmpt.2 (𝜑𝐴𝑉)
sge0revalmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0revalmpt (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem sge0revalmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sge0revalmpt.2 . . 3 (𝜑𝐴𝑉)
2 sge0revalmpt.1 . . . 4 𝑥𝜑
3 sge0revalmpt.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
4 eqid 2731 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 7050 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,)+∞))
61, 5sge0reval 46418 . 2 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ))
7 fveq2 6822 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
8 nfmpt1 5188 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
9 nfcv 2894 . . . . . . . . 9 𝑥𝑧
108, 9nffv 6832 . . . . . . . 8 𝑥((𝑥𝐴𝐵)‘𝑧)
11 nfcv 2894 . . . . . . . 8 𝑧((𝑥𝐴𝐵)‘𝑥)
127, 10, 11cbvsum 15602 . . . . . . 7 Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥)
1312a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥))
14 nfv 1915 . . . . . . . . 9 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
152, 14nfan 1900 . . . . . . . 8 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
16 elpwinss 45094 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1716adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑦𝐴)
18 simpr 484 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝑦)
1917, 18sseldd 3930 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2019adantll 714 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
21 simpll 766 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
2221, 20, 3syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
234fvmpt2 6940 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ (0[,)+∞)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2420, 22, 23syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2524ex 412 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦 → ((𝑥𝐴𝐵)‘𝑥) = 𝐵))
2615, 25ralrimi 3230 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
27 sumeq2 15601 . . . . . . 7 (∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵 → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
2826, 27syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
2913, 28eqtrd 2766 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 𝐵)
3029mpteq2dva 5182 . . . 4 (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3130rneqd 5877 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3231supeq1d 9330 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
336, 32eqtrd 2766 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wral 3047  cin 3896  wss 3897  𝒫 cpw 4547  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  0cc0 11006  +∞cpnf 11143  *cxr 11145   < clt 11146  [,)cico 13247  Σcsu 15593  Σ^csumge0 46408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-ico 13251  df-icc 13252  df-fz 13408  df-seq 13909  df-sum 15594  df-sumge0 46409
This theorem is referenced by:  sge0f1o  46428  sge0xaddlem1  46479  sge0xaddlem2  46480  sge0reuz  46493
  Copyright terms: Public domain W3C validator