Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xaddlem2 Structured version   Visualization version   GIF version

Theorem sge0xaddlem2 41288
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xaddlem2.a (𝜑𝐴𝑉)
sge0xaddlem2.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0xaddlem2.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
sge0xaddlem2.sb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
sge0xaddlem2.sc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
Assertion
Ref Expression
sge0xaddlem2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0xaddlem2
Dummy variables 𝑒 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 2009 . . 3 𝑘𝜑
2 sge0xaddlem2.a . . 3 (𝜑𝐴𝑉)
3 0xr 10340 . . . . 5 0 ∈ ℝ*
43a1i 11 . . . 4 ((𝜑𝑘𝐴) → 0 ∈ ℝ*)
5 pnfxr 10346 . . . . 5 +∞ ∈ ℝ*
65a1i 11 . . . 4 ((𝜑𝑘𝐴) → +∞ ∈ ℝ*)
7 rge0ssre 12484 . . . . . . 7 (0[,)+∞) ⊆ ℝ
8 sge0xaddlem2.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
97, 8sseldi 3759 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
10 sge0xaddlem2.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
117, 10sseldi 3759 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
129, 11readdcld 10323 . . . . 5 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ)
1312rexrd 10343 . . . 4 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ*)
14 icossicc 12463 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
1514, 8sseldi 3759 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
16 xrge0ge0 40201 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
1715, 16syl 17 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
1814, 10sseldi 3759 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
19 xrge0ge0 40201 . . . . . 6 (𝐶 ∈ (0[,]+∞) → 0 ≤ 𝐶)
2018, 19syl 17 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
219, 11, 17, 20addge0d 10857 . . . 4 ((𝜑𝑘𝐴) → 0 ≤ (𝐵 + 𝐶))
2212ltpnfd 12155 . . . 4 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) < +∞)
234, 6, 13, 21, 22elicod 12426 . . 3 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ (0[,)+∞))
241, 2, 23sge0revalmpt 41232 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
25 rexadd 12265 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
269, 11, 25syl2anc 579 . . . 4 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2726mpteq2dva 4903 . . 3 (𝜑 → (𝑘𝐴 ↦ (𝐵 +𝑒 𝐶)) = (𝑘𝐴 ↦ (𝐵 + 𝐶)))
2827fveq2d 6379 . 2 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))))
29 sge0xaddlem2.sb . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
30 sge0xaddlem2.sc . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
31 rexadd 12265 . . . 4 (((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
3229, 30, 31syl2anc 579 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
331, 2, 8sge0revalmpt 41232 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
341, 2, 10sge0revalmpt 41232 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
3533, 34oveq12d 6860 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
3633eqcomd 2771 . . . . . . 7 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = (Σ^‘(𝑘𝐴𝐵)))
3736, 29eqeltrd 2844 . . . . . 6 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
3834, 30eqeltrrd 2845 . . . . . 6 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
3937, 38readdcld 10323 . . . . 5 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ)
4039rexrd 10343 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ*)
41 elinel2 3962 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
4241adantl 473 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
43 simpll 783 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
44 elpwinss 39867 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
4544adantr 472 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝐴)
46 simpr 477 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
4745, 46sseldd 3762 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝐴)
4847adantll 705 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
4943, 48, 9syl2anc 579 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
5043, 48, 11syl2anc 579 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℝ)
5149, 50readdcld 10323 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ ℝ)
5242, 51fsumrecl 14750 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ)
5352rexrd 10343 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
5453ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
55 eqid 2765 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))
5655rnmptss 6582 . . . . . 6 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
5754, 56syl 17 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
58 supxrcl 12347 . . . . 5 (ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
5957, 58syl 17 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
6035eqcomd 2771 . . . . . . 7 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
6160adantr 472 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) = ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))))
62 nfv 2009 . . . . . . . 8 𝑘(𝜑𝑒 ∈ ℝ+)
632adantr 472 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → 𝐴𝑉)
6415adantlr 706 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
65 rphalfcl 12056 . . . . . . . . 9 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
6665adantl 473 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 2) ∈ ℝ+)
6729adantr 472 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
6862, 63, 64, 66, 67sge0ltfirpmpt2 41280 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑢 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)))
6918adantlr 706 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
7030adantr 472 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ ℝ+) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
7162, 63, 69, 66, 70sge0ltfirpmpt2 41280 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → ∃𝑣 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)))
72713ad2ant1 1163 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → ∃𝑣 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)))
73633ad2ant1 1163 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → 𝐴𝑉)
74733ad2ant1 1163 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝐴𝑉)
75 simpl1l 1293 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝜑)
76753ad2antl1 1236 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝜑)
77 simpr 477 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝑗𝐴)
78 nfv 2009 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑗𝐴)
79 nfcsb1v 3707 . . . . . . . . . . . . . . . . . 18 𝑘𝑗 / 𝑘𝐵
8079nfel1 2922 . . . . . . . . . . . . . . . . 17 𝑘𝑗 / 𝑘𝐵 ∈ (0[,)+∞)
8178, 80nfim 1995 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
82 eleq1w 2827 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
8382anbi2d 622 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
84 csbeq1a 3700 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
8584eleq1d 2829 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐵 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐵 ∈ (0[,)+∞)))
8683, 85imbi12d 335 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))))
8781, 86, 8chvar 2368 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
8876, 77, 87syl2anc 579 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
89 nfcsb1v 3707 . . . . . . . . . . . . . . . . . 18 𝑘𝑗 / 𝑘𝐶
9089nfel1 2922 . . . . . . . . . . . . . . . . 17 𝑘𝑗 / 𝑘𝐶 ∈ (0[,)+∞)
9178, 90nfim 1995 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
92 csbeq1a 3700 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
9392eleq1d 2829 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐶 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,)+∞)))
9483, 93imbi12d 335 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞)) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))))
9591, 94, 10chvar 2368 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
9676, 77, 95syl2anc 579 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
97 simp11r 1384 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑒 ∈ ℝ+)
98 simp12 1261 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑢 ∈ (𝒫 𝐴 ∩ Fin))
99 elpwinss 39867 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢𝐴)
10098, 99syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑢𝐴)
101 elinel2 3962 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → 𝑢 ∈ Fin)
1021013ad2ant2 1164 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → 𝑢 ∈ Fin)
1031023ad2ant1 1163 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑢 ∈ Fin)
104 simp2 1167 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑣 ∈ (𝒫 𝐴 ∩ Fin))
105 elpwinss 39867 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣𝐴)
106104, 105syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑣𝐴)
107 elinel2 3962 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → 𝑣 ∈ Fin)
1081073ad2ant2 1164 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝑣 ∈ Fin)
109 simp13 1262 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)))
110 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑗𝐵
111110, 79, 84cbvmpt 4908 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴𝐵) = (𝑗𝐴𝑗 / 𝑘𝐵)
112111fveq2i 6378 . . . . . . . . . . . . . . . . 17 ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵))
113 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑗𝑢
114 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑘𝑢
11584, 113, 114, 110, 79cbvsum 14710 . . . . . . . . . . . . . . . . . 18 Σ𝑘𝑢 𝐵 = Σ𝑗𝑢 𝑗 / 𝑘𝐵
116115oveq1i 6852 . . . . . . . . . . . . . . . . 17 𝑘𝑢 𝐵 + (𝑒 / 2)) = (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2))
117112, 116breq12i 4818 . . . . . . . . . . . . . . . 16 ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) ↔ (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) < (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2)))
118117biimpi 207 . . . . . . . . . . . . . . 15 ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) < (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2)))
119109, 118syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) < (Σ𝑗𝑢 𝑗 / 𝑘𝐵 + (𝑒 / 2)))
120 simp3 1168 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)))
121 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑗𝐶
122121, 89, 92cbvmpt 4908 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴𝐶) = (𝑗𝐴𝑗 / 𝑘𝐶)
123122fveq2i 6378 . . . . . . . . . . . . . . . . 17 ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))
124 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑗𝑣
125 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑘𝑣
12692, 124, 125, 121, 89cbvsum 14710 . . . . . . . . . . . . . . . . . 18 Σ𝑘𝑣 𝐶 = Σ𝑗𝑣 𝑗 / 𝑘𝐶
127126oveq1i 6852 . . . . . . . . . . . . . . . . 17 𝑘𝑣 𝐶 + (𝑒 / 2)) = (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2))
128123, 127breq12i 4818 . . . . . . . . . . . . . . . 16 ((Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) ↔ (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) < (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2)))
129128biimpi 207 . . . . . . . . . . . . . . 15 ((Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) < (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2)))
130120, 129syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) < (Σ𝑗𝑣 𝑗 / 𝑘𝐶 + (𝑒 / 2)))
131 simp11l 1383 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → 𝜑)
13284, 92oveq12d 6860 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝐵 + 𝐶) = (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶))
133 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗𝑥
134 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝑥
135 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗(𝐵 + 𝐶)
136 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 +
13779, 136, 89nfov 6872 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)
138132, 133, 134, 135, 137cbvsum 14710 . . . . . . . . . . . . . . . . . . . . . 22 Σ𝑘𝑥 (𝐵 + 𝐶) = Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)
139138mpteq2i 4900 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶))
140139rneqi 5520 . . . . . . . . . . . . . . . . . . . 20 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶))
141140supeq1i 8560 . . . . . . . . . . . . . . . . . . 19 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < )
142141eqcomi 2774 . . . . . . . . . . . . . . . . . 18 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < )
143142a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
144143, 24eqtr4d 2802 . . . . . . . . . . . . . . . 16 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) = (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))))
145 ge0xaddcl 12490 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
14615, 18, 145syl2anc 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
14726, 146eqeltrrd 2845 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ (0[,]+∞))
1481, 2, 147sge0clmpt 41279 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) ∈ (0[,]+∞))
149144, 148eqeltrd 2844 . . . . . . . . . . . . . . 15 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) ∈ (0[,]+∞))
150131, 149syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) ∈ (0[,]+∞))
151112, 29syl5eqelr 2849 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
152131, 151syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
153123, 30syl5eqelr 2849 . . . . . . . . . . . . . . 15 (𝜑 → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
154131, 153syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
15574, 88, 96, 97, 100, 103, 106, 108, 119, 130, 150, 152, 154sge0xaddlem1 41287 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) + (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) +𝑒 𝑒))
156112, 123oveq12i 6854 . . . . . . . . . . . . . 14 ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) + (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)))
157141oveq1i 6852 . . . . . . . . . . . . . 14 (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) +𝑒 𝑒)
158156, 157breq12i 4818 . . . . . . . . . . . . 13 (((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒) ↔ ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) + (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑗𝑥 (𝑗 / 𝑘𝐵 + 𝑗 / 𝑘𝐶)), ℝ*, < ) +𝑒 𝑒))
159155, 158sylibr 225 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) ∧ 𝑣 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2))) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
1601593exp 1148 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → (𝑣 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))))
161160rexlimdv 3177 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → (∃𝑣 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑣 𝐶 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒)))
16272, 161mpd 15 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑢 ∈ (𝒫 𝐴 ∩ Fin) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2))) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
1631623exp 1148 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑢 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))))
164163rexlimdv 3177 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (∃𝑢 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑢 𝐵 + (𝑒 / 2)) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒)))
16568, 164mpd 15 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
16661, 165eqbrtrd 4831 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝑒))
16740, 59, 166xrlexaddrp 40206 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
16824eqcomd 2771 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))))
16943, 48, 23syl2anc 579 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ (0[,)+∞))
17042, 169sge0fsummpt 41244 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) = Σ𝑘𝑥 (𝐵 + 𝐶))
17149recnd 10322 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℂ)
17250recnd 10322 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℂ)
17342, 171, 172fsumadd 14755 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) = (Σ𝑘𝑥 𝐵 + Σ𝑘𝑥 𝐶))
174170, 173eqtrd 2799 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) = (Σ𝑘𝑥 𝐵 + Σ𝑘𝑥 𝐶))
17542, 49fsumrecl 14750 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
17642, 50fsumrecl 14750 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ∈ ℝ)
17737adantr 472 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
17838adantr 472 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
179 elinel2 3962 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
180179adantl 473 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
181 simpll 783 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
182 elpwinss 39867 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
183182adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑦𝐴)
184 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑦)
185183, 184sseldd 3762 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
186185adantll 705 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
187181, 186, 9syl2anc 579 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
188180, 187fsumrecl 14750 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ)
189188rexrd 10343 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ*)
190189ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑦 𝐵 ∈ ℝ*)
191 eqid 2765 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵)
192191rnmptss 6582 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑦 𝐵 ∈ ℝ* → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ*)
193190, 192syl 17 . . . . . . . . . . 11 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ*)
194193adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ*)
195 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
196 eqidd 2766 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 = Σ𝑘𝑥 𝐵)
197 sumeq1 14704 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑥 𝐵)
198197rspceeqv 3479 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘𝑥 𝐵 = Σ𝑘𝑥 𝐵) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
199195, 196, 198syl2anc 579 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
200175elexd 3367 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ V)
201191, 199, 200elrnmptd 40013 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ∈ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵))
202 supxrub 12356 . . . . . . . . . 10 ((ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ℝ* ∧ Σ𝑘𝑥 𝐵 ∈ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵)) → Σ𝑘𝑥 𝐵 ≤ sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
203194, 201, 202syl2anc 579 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐵 ≤ sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
204 nfv 2009 . . . . . . . . . . . 12 𝑧𝜑
205 eqid 2765 . . . . . . . . . . . 12 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶)
206 elinel2 3962 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
207206adantl 473 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
208 simpll 783 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑧) → 𝜑)
209 elpwinss 39867 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
210209adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑧) → 𝑧𝐴)
211 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑧) → 𝑘𝑧)
212210, 211sseldd 3762 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑧) → 𝑘𝐴)
213212adantll 705 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑧) → 𝑘𝐴)
214208, 213, 11syl2anc 579 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑧) → 𝐶 ∈ ℝ)
215207, 214fsumrecl 14750 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑧 𝐶 ∈ ℝ)
216215rexrd 10343 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑧 𝐶 ∈ ℝ*)
217204, 205, 216rnmptssd 40032 . . . . . . . . . . 11 (𝜑 → ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) ⊆ ℝ*)
218217adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) ⊆ ℝ*)
219 eqidd 2766 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 = Σ𝑘𝑥 𝐶)
220 sumeq1 14704 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → Σ𝑘𝑧 𝐶 = Σ𝑘𝑥 𝐶)
221220rspceeqv 3479 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘𝑥 𝐶 = Σ𝑘𝑥 𝐶) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐶 = Σ𝑘𝑧 𝐶)
222195, 219, 221syl2anc 579 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 𝐶 = Σ𝑘𝑧 𝐶)
223176elexd 3367 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ∈ V)
224205, 222, 223elrnmptd 40013 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ∈ ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶))
225 supxrub 12356 . . . . . . . . . 10 ((ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶) ⊆ ℝ* ∧ Σ𝑘𝑥 𝐶 ∈ ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶)) → Σ𝑘𝑥 𝐶 ≤ sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
226218, 224, 225syl2anc 579 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 𝐶 ≤ sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
227175, 176, 177, 178, 203, 226le2addd 10900 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ𝑘𝑥 𝐵 + Σ𝑘𝑥 𝐶) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
228174, 227eqbrtrd 4831 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
229228ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
2301, 2, 147, 40sge0lefimpt 41277 . . . . . 6 (𝜑 → ((Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ↔ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝑥 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))))
231229, 230mpbird 248 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 + 𝐶))) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
232168, 231eqbrtrd 4831 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≤ (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
23340, 59, 167, 232xrletrid 12188 . . 3 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
23432, 35, 2333eqtrd 2803 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
23524, 28, 2343eqtr4d 2809 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  csb 3691  cin 3731  wss 3732  𝒫 cpw 4315   class class class wbr 4809  cmpt 4888  ran crn 5278  cfv 6068  (class class class)co 6842  Fincfn 8160  supcsup 8553  cr 10188  0cc0 10189   + caddc 10192  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329   / cdiv 10938  2c2 11327  +crp 12028   +𝑒 cxad 12144  [,)cico 12379  [,]cicc 12380  Σcsu 14701  Σ^csumge0 41216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xadd 12147  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-sumge0 41217
This theorem is referenced by:  sge0xadd  41289
  Copyright terms: Public domain W3C validator