Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ltfirpmpt2 Structured version   Visualization version   GIF version

Theorem sge0ltfirpmpt2 46347
Description: If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ltfirpmpt2.xph 𝑥𝜑
sge0ltfirpmpt2.a (𝜑𝐴𝑉)
sge0ltfirpmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0ltfirpmpt2.rp (𝜑𝑌 ∈ ℝ+)
sge0ltfirpmpt2.re (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
Assertion
Ref Expression
sge0ltfirpmpt2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem sge0ltfirpmpt2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sge0ltfirpmpt2.a . . 3 (𝜑𝐴𝑉)
2 sge0ltfirpmpt2.xph . . . 4 𝑥𝜑
3 sge0ltfirpmpt2.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2740 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 7151 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0ltfirpmpt2.rp . . 3 (𝜑𝑌 ∈ ℝ+)
7 sge0ltfirpmpt2.re . . 3 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
81, 5, 6, 7sge0ltfirp 46321 . 2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
9 simpr 484 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
10 elpwinss 44951 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110resmptd 6069 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴𝐵) ↾ 𝑦) = (𝑥𝑦𝐵))
1211fveq2d 6924 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
1312adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
14 elinel2 4225 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
1514adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
16 nfv 1913 . . . . . . . . . . 11 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1898 . . . . . . . . . 10 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 766 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
1910sselda 4008 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2019adantll 713 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
212, 1, 3, 7sge0rernmpt 46343 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
2218, 20, 21syl2anc 583 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
23 eqid 2740 . . . . . . . . . 10 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
2417, 22, 23fmptdf 7151 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,)+∞))
2515, 24sge0fsum 46308 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘))
26 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑦)
27 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
2810sselda 4008 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
2928adantll 713 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
30 nfv 1913 . . . . . . . . . . . . . . 15 𝑥 𝑘𝐴
312, 30nfan 1898 . . . . . . . . . . . . . 14 𝑥(𝜑𝑘𝐴)
32 nfcsb1v 3946 . . . . . . . . . . . . . . 15 𝑥𝑘 / 𝑥𝐵
3332nfel1 2925 . . . . . . . . . . . . . 14 𝑥𝑘 / 𝑥𝐵 ∈ (0[,)+∞)
3431, 33nfim 1895 . . . . . . . . . . . . 13 𝑥((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
35 eleq1w 2827 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
3635anbi2d 629 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((𝜑𝑥𝐴) ↔ (𝜑𝑘𝐴)))
37 csbeq1a 3935 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
3837eleq1d 2829 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝐵 ∈ (0[,)+∞) ↔ 𝑘 / 𝑥𝐵 ∈ (0[,)+∞)))
3936, 38imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))))
4034, 39, 21chvarfv 2241 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
4127, 29, 40syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
42 nfcv 2908 . . . . . . . . . . . . 13 𝑘𝐵
4342, 32, 37cbvmpt 5277 . . . . . . . . . . . 12 (𝑥𝑦𝐵) = (𝑘𝑦𝑘 / 𝑥𝐵)
4443fvmpt2 7040 . . . . . . . . . . 11 ((𝑘𝑦𝑘 / 𝑥𝐵 ∈ (0[,)+∞)) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4526, 41, 44syl2anc 583 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4645sumeq2dv 15750 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑘𝑦 𝑘 / 𝑥𝐵)
47 eqcom 2747 . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝑘 = 𝑥)
4847imbi1i 349 . . . . . . . . . . . . 13 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵))
49 eqcom 2747 . . . . . . . . . . . . . 14 (𝐵 = 𝑘 / 𝑥𝐵𝑘 / 𝑥𝐵 = 𝐵)
5049imbi2i 336 . . . . . . . . . . . . 13 ((𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5148, 50bitri 275 . . . . . . . . . . . 12 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5237, 51mpbi 230 . . . . . . . . . . 11 (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵)
5352, 32, 42cbvsum 15743 . . . . . . . . . 10 Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵
5453a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵)
5546, 54eqtrd 2780 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑥𝑦 𝐵)
5613, 25, 553eqtrd 2784 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = Σ𝑥𝑦 𝐵)
5756oveq1d 7463 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
5857adantr 480 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
599, 58breqtrd 5192 . . . 4 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
6059ex 412 . . 3 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
6160reximdva 3174 . 2 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
628, 61mpd 15 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wrex 3076  csb 3921  cin 3975  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  cres 5702  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184   + caddc 11187  +∞cpnf 11321   < clt 11324  +crp 13057  [,)cico 13409  [,]cicc 13410  Σcsu 15734  Σ^csumge0 46283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-sumge0 46284
This theorem is referenced by:  sge0xaddlem2  46355  sge0gtfsumgt  46364
  Copyright terms: Public domain W3C validator