Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ltfirpmpt2 Structured version   Visualization version   GIF version

Theorem sge0ltfirpmpt2 46382
Description: If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ltfirpmpt2.xph 𝑥𝜑
sge0ltfirpmpt2.a (𝜑𝐴𝑉)
sge0ltfirpmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0ltfirpmpt2.rp (𝜑𝑌 ∈ ℝ+)
sge0ltfirpmpt2.re (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
Assertion
Ref Expression
sge0ltfirpmpt2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑦,𝑌   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem sge0ltfirpmpt2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sge0ltfirpmpt2.a . . 3 (𝜑𝐴𝑉)
2 sge0ltfirpmpt2.xph . . . 4 𝑥𝜑
3 sge0ltfirpmpt2.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2735 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 7137 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0ltfirpmpt2.rp . . 3 (𝜑𝑌 ∈ ℝ+)
7 sge0ltfirpmpt2.re . . 3 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
81, 5, 6, 7sge0ltfirp 46356 . 2 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
9 simpr 484 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌))
10 elpwinss 44989 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110resmptd 6060 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴𝐵) ↾ 𝑦) = (𝑥𝑦𝐵))
1211fveq2d 6911 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
1312adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = (Σ^‘(𝑥𝑦𝐵)))
14 elinel2 4212 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
1514adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
16 nfv 1912 . . . . . . . . . . 11 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1897 . . . . . . . . . 10 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
18 simpll 767 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
1910sselda 3995 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2019adantll 714 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
212, 1, 3, 7sge0rernmpt 46378 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
2218, 20, 21syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
23 eqid 2735 . . . . . . . . . 10 (𝑥𝑦𝐵) = (𝑥𝑦𝐵)
2417, 22, 23fmptdf 7137 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦𝐵):𝑦⟶(0[,)+∞))
2515, 24sge0fsum 46343 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦𝐵)) = Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘))
26 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑦)
27 simpll 767 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
2810sselda 3995 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
2928adantll 714 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
30 nfv 1912 . . . . . . . . . . . . . . 15 𝑥 𝑘𝐴
312, 30nfan 1897 . . . . . . . . . . . . . 14 𝑥(𝜑𝑘𝐴)
32 nfcsb1v 3933 . . . . . . . . . . . . . . 15 𝑥𝑘 / 𝑥𝐵
3332nfel1 2920 . . . . . . . . . . . . . 14 𝑥𝑘 / 𝑥𝐵 ∈ (0[,)+∞)
3431, 33nfim 1894 . . . . . . . . . . . . 13 𝑥((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
35 eleq1w 2822 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
3635anbi2d 630 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((𝜑𝑥𝐴) ↔ (𝜑𝑘𝐴)))
37 csbeq1a 3922 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
3837eleq1d 2824 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝐵 ∈ (0[,)+∞) ↔ 𝑘 / 𝑥𝐵 ∈ (0[,)+∞)))
3936, 38imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))))
4034, 39, 21chvarfv 2238 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
4127, 29, 40syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 / 𝑥𝐵 ∈ (0[,)+∞))
42 nfcv 2903 . . . . . . . . . . . . 13 𝑘𝐵
4342, 32, 37cbvmpt 5259 . . . . . . . . . . . 12 (𝑥𝑦𝐵) = (𝑘𝑦𝑘 / 𝑥𝐵)
4443fvmpt2 7027 . . . . . . . . . . 11 ((𝑘𝑦𝑘 / 𝑥𝐵 ∈ (0[,)+∞)) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4526, 41, 44syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → ((𝑥𝑦𝐵)‘𝑘) = 𝑘 / 𝑥𝐵)
4645sumeq2dv 15735 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑘𝑦 𝑘 / 𝑥𝐵)
47 eqcom 2742 . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝑘 = 𝑥)
4847imbi1i 349 . . . . . . . . . . . . 13 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵))
49 eqcom 2742 . . . . . . . . . . . . . 14 (𝐵 = 𝑘 / 𝑥𝐵𝑘 / 𝑥𝐵 = 𝐵)
5049imbi2i 336 . . . . . . . . . . . . 13 ((𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5148, 50bitri 275 . . . . . . . . . . . 12 ((𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵) ↔ (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵))
5237, 51mpbi 230 . . . . . . . . . . 11 (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵)
5352, 32, 42cbvsum 15728 . . . . . . . . . 10 Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵
5453a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝑘 / 𝑥𝐵 = Σ𝑥𝑦 𝐵)
5546, 54eqtrd 2775 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 ((𝑥𝑦𝐵)‘𝑘) = Σ𝑥𝑦 𝐵)
5613, 25, 553eqtrd 2779 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) = Σ𝑥𝑦 𝐵)
5756oveq1d 7446 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
5857adantr 480 . . . . 5 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) = (Σ𝑥𝑦 𝐵 + 𝑌))
599, 58breqtrd 5174 . . . 4 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌)) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
6059ex 412 . . 3 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → (Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
6160reximdva 3166 . 2 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑦)) + 𝑌) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌)))
628, 61mpd 15 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥𝐴𝐵)) < (Σ𝑥𝑦 𝐵 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wrex 3068  csb 3908  cin 3962  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  cres 5691  cfv 6563  (class class class)co 7431  Fincfn 8984  cr 11152  0cc0 11153   + caddc 11156  +∞cpnf 11290   < clt 11293  +crp 13032  [,)cico 13386  [,]cicc 13387  Σcsu 15719  Σ^csumge0 46318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319
This theorem is referenced by:  sge0xaddlem2  46390  sge0gtfsumgt  46399
  Copyright terms: Public domain W3C validator