Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xaddlem1 Structured version   Visualization version   GIF version

Theorem sge0xaddlem1 42709
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xaddlem1.a (𝜑𝐴𝑉)
sge0xaddlem1.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0xaddlem1.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
sge0xaddlem1.rp (𝜑𝐸 ∈ ℝ+)
sge0xaddlem1.u (𝜑𝑈𝐴)
sge0xaddlem1.ufi (𝜑𝑈 ∈ Fin)
sge0xaddlem1.7 (𝜑𝑊𝐴)
sge0xaddlem1.wfi (𝜑𝑊 ∈ Fin)
sge0xaddlem1.ltb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑈 𝐵 + (𝐸 / 2)))
sge0xaddlem1.ltc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑊 𝐶 + (𝐸 / 2)))
sge0xaddlem1.xr (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
sge0xaddlem1.sb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
sge0xaddlem1.sc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
Assertion
Ref Expression
sge0xaddlem1 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑥,𝐶   𝑈,𝑘,𝑥   𝑘,𝑊,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐸(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem sge0xaddlem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1911 . . . . 5 𝑘𝜑
2 sge0xaddlem1.a . . . . 5 (𝜑𝐴𝑉)
3 sge0xaddlem1.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
41, 2, 3sge0revalmpt 42654 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
5 sge0xaddlem1.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
61, 2, 5sge0revalmpt 42654 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
74, 6oveq12d 7168 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
84eqcomd 2827 . . . . . 6 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = (Σ^‘(𝑘𝐴𝐵)))
9 sge0xaddlem1.sb . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
108, 9eqeltrd 2913 . . . . 5 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
11 sge0xaddlem1.sc . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
126, 11eqeltrrd 2914 . . . . 5 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
1310, 12readdcld 10664 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ)
1413rexrd 10685 . . 3 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ*)
157, 14eqeltrd 2913 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ∈ ℝ*)
16 elinel2 4172 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1716adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
18 simpll 765 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
19 elpwinss 41304 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
2019adantr 483 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝐴)
21 simpr 487 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
2220, 21sseldd 3967 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝐴)
2322adantll 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
24 rge0ssre 12838 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
2524, 3sseldi 3964 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
2618, 23, 25syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
2724, 5sseldi 3964 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
2818, 23, 27syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℝ)
2926, 28readdcld 10664 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ ℝ)
3017, 29fsumrecl 15085 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ)
3130rexrd 10685 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
3231ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
33 eqid 2821 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))
3433rnmptss 6880 . . . . 5 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
3532, 34syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
36 supxrcl 12702 . . . 4 (ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
3735, 36syl 17 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
38 sge0xaddlem1.rp . . . 4 (𝜑𝐸 ∈ ℝ+)
3938rpxrd 12426 . . 3 (𝜑𝐸 ∈ ℝ*)
4037, 39xaddcld 12688 . 2 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) ∈ ℝ*)
41 sge0xaddlem1.ufi . . . . . . 7 (𝜑𝑈 ∈ Fin)
42 simpl 485 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝜑)
43 sge0xaddlem1.u . . . . . . . . . 10 (𝜑𝑈𝐴)
4443sselda 3966 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑘𝐴)
4542, 44, 3syl2anc 586 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝐵 ∈ (0[,)+∞))
4624, 45sseldi 3964 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐵 ∈ ℝ)
4741, 46fsumrecl 15085 . . . . . 6 (𝜑 → Σ𝑘𝑈 𝐵 ∈ ℝ)
4838rpred 12425 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
4948rehalfcld 11878 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℝ)
5047, 49readdcld 10664 . . . . 5 (𝜑 → (Σ𝑘𝑈 𝐵 + (𝐸 / 2)) ∈ ℝ)
51 sge0xaddlem1.wfi . . . . . . 7 (𝜑𝑊 ∈ Fin)
5224a1i 11 . . . . . . . 8 ((𝜑𝑘𝑊) → (0[,)+∞) ⊆ ℝ)
53 simpl 485 . . . . . . . . 9 ((𝜑𝑘𝑊) → 𝜑)
54 sge0xaddlem1.7 . . . . . . . . . . 11 (𝜑𝑊𝐴)
5554adantr 483 . . . . . . . . . 10 ((𝜑𝑘𝑊) → 𝑊𝐴)
56 simpr 487 . . . . . . . . . 10 ((𝜑𝑘𝑊) → 𝑘𝑊)
5755, 56sseldd 3967 . . . . . . . . 9 ((𝜑𝑘𝑊) → 𝑘𝐴)
5853, 57, 5syl2anc 586 . . . . . . . 8 ((𝜑𝑘𝑊) → 𝐶 ∈ (0[,)+∞))
5952, 58sseldd 3967 . . . . . . 7 ((𝜑𝑘𝑊) → 𝐶 ∈ ℝ)
6051, 59fsumrecl 15085 . . . . . 6 (𝜑 → Σ𝑘𝑊 𝐶 ∈ ℝ)
6160, 49readdcld 10664 . . . . 5 (𝜑 → (Σ𝑘𝑊 𝐶 + (𝐸 / 2)) ∈ ℝ)
6250, 61readdcld 10664 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ∈ ℝ)
6362rexrd 10685 . . 3 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ∈ ℝ*)
64 sge0xaddlem1.ltb . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑈 𝐵 + (𝐸 / 2)))
65 sge0xaddlem1.ltc . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑊 𝐶 + (𝐸 / 2)))
669, 11, 50, 61, 64, 65ltadd12dd 41604 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) < ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))))
6747recnd 10663 . . . . . 6 (𝜑 → Σ𝑘𝑈 𝐵 ∈ ℂ)
6849recnd 10663 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℂ)
6960recnd 10663 . . . . . 6 (𝜑 → Σ𝑘𝑊 𝐶 ∈ ℂ)
7067, 68, 69, 68add4d 10862 . . . . 5 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + ((𝐸 / 2) + (𝐸 / 2))))
7148recnd 10663 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
72712halvesd 11877 . . . . . 6 (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
7372oveq2d 7166 . . . . 5 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + ((𝐸 / 2) + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸))
7470, 73eqtrd 2856 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸))
7574, 63eqeltrrd 2914 . . . . . . . 8 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ*)
76 pnfxr 10689 . . . . . . . . 9 +∞ ∈ ℝ*
7776a1i 11 . . . . . . . 8 (𝜑 → +∞ ∈ ℝ*)
7874, 62eqeltrrd 2914 . . . . . . . . 9 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ)
79 ltpnf 12509 . . . . . . . . 9 (((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) < +∞)
8078, 79syl 17 . . . . . . . 8 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) < +∞)
8175, 77, 80xrltled 12537 . . . . . . 7 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ +∞)
8281adantr 483 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ +∞)
83 oveq1 7157 . . . . . . . 8 (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞ → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (+∞ +𝑒 𝐸))
8483adantl 484 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (+∞ +𝑒 𝐸))
8548renemnfd 10687 . . . . . . . . 9 (𝜑𝐸 ≠ -∞)
86 xaddpnf2 12614 . . . . . . . . 9 ((𝐸 ∈ ℝ*𝐸 ≠ -∞) → (+∞ +𝑒 𝐸) = +∞)
8739, 85, 86syl2anc 586 . . . . . . . 8 (𝜑 → (+∞ +𝑒 𝐸) = +∞)
8887adantr 483 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → (+∞ +𝑒 𝐸) = +∞)
8984, 88eqtr2d 2857 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → +∞ = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
9082, 89breqtrd 5084 . . . . 5 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
91 simpl 485 . . . . . 6 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → 𝜑)
92 sge0xaddlem1.xr . . . . . . . 8 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
9391, 92syl 17 . . . . . . 7 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
94 neqne 3024 . . . . . . . 8 (¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞)
9594adantl 484 . . . . . . 7 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞)
96 ge0xrre 41800 . . . . . . 7 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞) ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
9793, 95, 96syl2anc 586 . . . . . 6 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
9847, 60readdcld 10664 . . . . . . . . 9 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ∈ ℝ)
9998adantr 483 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ∈ ℝ)
100 simpr 487 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
10148adantr 483 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → 𝐸 ∈ ℝ)
10241, 51jca 514 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∈ Fin ∧ 𝑊 ∈ Fin))
103 unfi 8779 . . . . . . . . . . . 12 ((𝑈 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑈𝑊) ∈ Fin)
104102, 103syl 17 . . . . . . . . . . 11 (𝜑 → (𝑈𝑊) ∈ Fin)
105 simpl 485 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝜑)
10643, 54unssd 4161 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈𝑊) ⊆ 𝐴)
107106adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑈𝑊)) → (𝑈𝑊) ⊆ 𝐴)
108 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝑘 ∈ (𝑈𝑊))
109107, 108sseldd 3967 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝑘𝐴)
110105, 109, 25syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐵 ∈ ℝ)
111109, 27syldan 593 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐶 ∈ ℝ)
112110, 111readdcld 10664 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑈𝑊)) → (𝐵 + 𝐶) ∈ ℝ)
113104, 112fsumrecl 15085 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ℝ)
114113adantr 483 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ℝ)
115104, 110fsumrecl 15085 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)𝐵 ∈ ℝ)
116104, 111fsumrecl 15085 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)𝐶 ∈ ℝ)
117 icossicc 12818 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ (0[,]+∞)
118117, 3sseldi 3964 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
119 xrge0ge0 41608 . . . . . . . . . . . . . . 15 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
120118, 119syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
121109, 120syldan 593 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 0 ≤ 𝐵)
122 ssun1 4147 . . . . . . . . . . . . . 14 𝑈 ⊆ (𝑈𝑊)
123122a1i 11 . . . . . . . . . . . . 13 (𝜑𝑈 ⊆ (𝑈𝑊))
124104, 110, 121, 123fsumless 15145 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝑈 𝐵 ≤ Σ𝑘 ∈ (𝑈𝑊)𝐵)
125117, 5sseldi 3964 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
126 xrge0ge0 41608 . . . . . . . . . . . . . . 15 (𝐶 ∈ (0[,]+∞) → 0 ≤ 𝐶)
127125, 126syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
128109, 127syldan 593 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 0 ≤ 𝐶)
129 ssun2 4148 . . . . . . . . . . . . . 14 𝑊 ⊆ (𝑈𝑊)
130129a1i 11 . . . . . . . . . . . . 13 (𝜑𝑊 ⊆ (𝑈𝑊))
131104, 111, 128, 130fsumless 15145 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝑊 𝐶 ≤ Σ𝑘 ∈ (𝑈𝑊)𝐶)
13247, 60, 115, 116, 124, 131leadd12dd 41577 . . . . . . . . . . 11 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶))
133110recnd 10663 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐵 ∈ ℂ)
134111recnd 10663 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐶 ∈ ℂ)
135104, 133, 134fsumadd 15090 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) = (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶))
136135eqcomd 2827 . . . . . . . . . . 11 (𝜑 → (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶) = Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
137132, 136breqtrd 5084 . . . . . . . . . 10 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
138137adantr 483 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
13935adantr 483 . . . . . . . . . 10 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
140104, 106elpwd 4549 . . . . . . . . . . . . 13 (𝜑 → (𝑈𝑊) ∈ 𝒫 𝐴)
141140, 104elind 4170 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑊) ∈ (𝒫 𝐴 ∩ Fin))
142113elexd 3514 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ V)
143 sumeq1 15039 . . . . . . . . . . . . 13 (𝑥 = (𝑈𝑊) → Σ𝑘𝑥 (𝐵 + 𝐶) = Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
14433, 143elrnmpt1s 5823 . . . . . . . . . . . 12 (((𝑈𝑊) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ V) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
145141, 142, 144syl2anc 586 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
146145adantr 483 . . . . . . . . . 10 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
147 supxrub 12711 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* ∧ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
148139, 146, 147syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
14999, 114, 100, 138, 148letrd 10791 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
15099, 100, 101, 149leadd1dd 11248 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
151 rexadd 12619 . . . . . . . . 9 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
152100, 101, 151syl2anc 586 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
153152eqcomd 2827 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
154150, 153breqtrd 5084 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15591, 97, 154syl2anc 586 . . . . 5 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15690, 155pm2.61dan 811 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15774, 156eqbrtrd 5080 . . 3 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15815, 63, 40, 66, 157xrltletrd 12548 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) < (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15915, 40, 158xrltled 12537 1 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  cun 3933  cin 3934  wss 3935  𝒫 cpw 4538   class class class wbr 5058  cmpt 5138  ran crn 5550  cfv 6349  (class class class)co 7150  Fincfn 8503  supcsup 8898  cr 10530  0cc0 10531   + caddc 10534  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670   / cdiv 11291  2c2 11686  +crp 12383   +𝑒 cxad 12499  [,)cico 12734  [,]cicc 12735  Σcsu 15036  Σ^csumge0 42638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-xadd 12502  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-sumge0 42639
This theorem is referenced by:  sge0xaddlem2  42710
  Copyright terms: Public domain W3C validator