Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xaddlem1 Structured version   Visualization version   GIF version

Theorem sge0xaddlem1 42279
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xaddlem1.a (𝜑𝐴𝑉)
sge0xaddlem1.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0xaddlem1.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
sge0xaddlem1.rp (𝜑𝐸 ∈ ℝ+)
sge0xaddlem1.u (𝜑𝑈𝐴)
sge0xaddlem1.ufi (𝜑𝑈 ∈ Fin)
sge0xaddlem1.7 (𝜑𝑊𝐴)
sge0xaddlem1.wfi (𝜑𝑊 ∈ Fin)
sge0xaddlem1.ltb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑈 𝐵 + (𝐸 / 2)))
sge0xaddlem1.ltc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑊 𝐶 + (𝐸 / 2)))
sge0xaddlem1.xr (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
sge0xaddlem1.sb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
sge0xaddlem1.sc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
Assertion
Ref Expression
sge0xaddlem1 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑥,𝐶   𝑈,𝑘,𝑥   𝑘,𝑊,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐸(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem sge0xaddlem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1896 . . . . 5 𝑘𝜑
2 sge0xaddlem1.a . . . . 5 (𝜑𝐴𝑉)
3 sge0xaddlem1.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
41, 2, 3sge0revalmpt 42224 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
5 sge0xaddlem1.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
61, 2, 5sge0revalmpt 42224 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
74, 6oveq12d 7041 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
84eqcomd 2803 . . . . . 6 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = (Σ^‘(𝑘𝐴𝐵)))
9 sge0xaddlem1.sb . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
108, 9eqeltrd 2885 . . . . 5 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
11 sge0xaddlem1.sc . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
126, 11eqeltrrd 2886 . . . . 5 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
1310, 12readdcld 10523 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ)
1413rexrd 10544 . . 3 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ*)
157, 14eqeltrd 2885 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ∈ ℝ*)
16 elinel2 4100 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1716adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
18 simpll 763 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
19 elpwinss 40871 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
2019adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝐴)
21 simpr 485 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
2220, 21sseldd 3896 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝐴)
2322adantll 710 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
24 rge0ssre 12698 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
2524, 3sseldi 3893 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
2618, 23, 25syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
2724, 5sseldi 3893 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
2818, 23, 27syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℝ)
2926, 28readdcld 10523 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ ℝ)
3017, 29fsumrecl 14928 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ)
3130rexrd 10544 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
3231ralrimiva 3151 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
33 eqid 2797 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))
3433rnmptss 6756 . . . . 5 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
3532, 34syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
36 supxrcl 12562 . . . 4 (ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
3735, 36syl 17 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
38 sge0xaddlem1.rp . . . 4 (𝜑𝐸 ∈ ℝ+)
3938rpxrd 12286 . . 3 (𝜑𝐸 ∈ ℝ*)
4037, 39xaddcld 12548 . 2 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) ∈ ℝ*)
41 sge0xaddlem1.ufi . . . . . . 7 (𝜑𝑈 ∈ Fin)
42 simpl 483 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝜑)
43 sge0xaddlem1.u . . . . . . . . . 10 (𝜑𝑈𝐴)
4443sselda 3895 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑘𝐴)
4542, 44, 3syl2anc 584 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝐵 ∈ (0[,)+∞))
4624, 45sseldi 3893 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐵 ∈ ℝ)
4741, 46fsumrecl 14928 . . . . . 6 (𝜑 → Σ𝑘𝑈 𝐵 ∈ ℝ)
4838rpred 12285 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
4948rehalfcld 11738 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℝ)
5047, 49readdcld 10523 . . . . 5 (𝜑 → (Σ𝑘𝑈 𝐵 + (𝐸 / 2)) ∈ ℝ)
51 sge0xaddlem1.wfi . . . . . . 7 (𝜑𝑊 ∈ Fin)
5224a1i 11 . . . . . . . 8 ((𝜑𝑘𝑊) → (0[,)+∞) ⊆ ℝ)
53 simpl 483 . . . . . . . . 9 ((𝜑𝑘𝑊) → 𝜑)
54 sge0xaddlem1.7 . . . . . . . . . . 11 (𝜑𝑊𝐴)
5554adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝑊) → 𝑊𝐴)
56 simpr 485 . . . . . . . . . 10 ((𝜑𝑘𝑊) → 𝑘𝑊)
5755, 56sseldd 3896 . . . . . . . . 9 ((𝜑𝑘𝑊) → 𝑘𝐴)
5853, 57, 5syl2anc 584 . . . . . . . 8 ((𝜑𝑘𝑊) → 𝐶 ∈ (0[,)+∞))
5952, 58sseldd 3896 . . . . . . 7 ((𝜑𝑘𝑊) → 𝐶 ∈ ℝ)
6051, 59fsumrecl 14928 . . . . . 6 (𝜑 → Σ𝑘𝑊 𝐶 ∈ ℝ)
6160, 49readdcld 10523 . . . . 5 (𝜑 → (Σ𝑘𝑊 𝐶 + (𝐸 / 2)) ∈ ℝ)
6250, 61readdcld 10523 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ∈ ℝ)
6362rexrd 10544 . . 3 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ∈ ℝ*)
64 sge0xaddlem1.ltb . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑈 𝐵 + (𝐸 / 2)))
65 sge0xaddlem1.ltc . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑊 𝐶 + (𝐸 / 2)))
669, 11, 50, 61, 64, 65ltadd12dd 41173 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) < ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))))
6747recnd 10522 . . . . . 6 (𝜑 → Σ𝑘𝑈 𝐵 ∈ ℂ)
6849recnd 10522 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℂ)
6960recnd 10522 . . . . . 6 (𝜑 → Σ𝑘𝑊 𝐶 ∈ ℂ)
7067, 68, 69, 68add4d 10721 . . . . 5 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + ((𝐸 / 2) + (𝐸 / 2))))
7148recnd 10522 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
72712halvesd 11737 . . . . . 6 (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
7372oveq2d 7039 . . . . 5 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + ((𝐸 / 2) + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸))
7470, 73eqtrd 2833 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸))
7574, 63eqeltrrd 2886 . . . . . . . 8 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ*)
76 pnfxr 10548 . . . . . . . . 9 +∞ ∈ ℝ*
7776a1i 11 . . . . . . . 8 (𝜑 → +∞ ∈ ℝ*)
7874, 62eqeltrrd 2886 . . . . . . . . 9 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ)
79 ltpnf 12369 . . . . . . . . 9 (((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) < +∞)
8078, 79syl 17 . . . . . . . 8 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) < +∞)
8175, 77, 80xrltled 12397 . . . . . . 7 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ +∞)
8281adantr 481 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ +∞)
83 oveq1 7030 . . . . . . . 8 (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞ → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (+∞ +𝑒 𝐸))
8483adantl 482 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (+∞ +𝑒 𝐸))
8548renemnfd 10546 . . . . . . . . 9 (𝜑𝐸 ≠ -∞)
86 xaddpnf2 12474 . . . . . . . . 9 ((𝐸 ∈ ℝ*𝐸 ≠ -∞) → (+∞ +𝑒 𝐸) = +∞)
8739, 85, 86syl2anc 584 . . . . . . . 8 (𝜑 → (+∞ +𝑒 𝐸) = +∞)
8887adantr 481 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → (+∞ +𝑒 𝐸) = +∞)
8984, 88eqtr2d 2834 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → +∞ = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
9082, 89breqtrd 4994 . . . . 5 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
91 simpl 483 . . . . . 6 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → 𝜑)
92 sge0xaddlem1.xr . . . . . . . 8 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
9391, 92syl 17 . . . . . . 7 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
94 neqne 2994 . . . . . . . 8 (¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞)
9594adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞)
96 ge0xrre 41370 . . . . . . 7 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞) ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
9793, 95, 96syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
9847, 60readdcld 10523 . . . . . . . . 9 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ∈ ℝ)
9998adantr 481 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ∈ ℝ)
100 simpr 485 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
10148adantr 481 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → 𝐸 ∈ ℝ)
10241, 51jca 512 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∈ Fin ∧ 𝑊 ∈ Fin))
103 unfi 8638 . . . . . . . . . . . 12 ((𝑈 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑈𝑊) ∈ Fin)
104102, 103syl 17 . . . . . . . . . . 11 (𝜑 → (𝑈𝑊) ∈ Fin)
105 simpl 483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝜑)
10643, 54unssd 4089 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈𝑊) ⊆ 𝐴)
107106adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑈𝑊)) → (𝑈𝑊) ⊆ 𝐴)
108 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝑘 ∈ (𝑈𝑊))
109107, 108sseldd 3896 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝑘𝐴)
110105, 109, 25syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐵 ∈ ℝ)
111109, 27syldan 591 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐶 ∈ ℝ)
112110, 111readdcld 10523 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑈𝑊)) → (𝐵 + 𝐶) ∈ ℝ)
113104, 112fsumrecl 14928 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ℝ)
114113adantr 481 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ℝ)
115104, 110fsumrecl 14928 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)𝐵 ∈ ℝ)
116104, 111fsumrecl 14928 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)𝐶 ∈ ℝ)
117 icossicc 12678 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ (0[,]+∞)
118117, 3sseldi 3893 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
119 xrge0ge0 41177 . . . . . . . . . . . . . . 15 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
120118, 119syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
121109, 120syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 0 ≤ 𝐵)
122 ssun1 4075 . . . . . . . . . . . . . 14 𝑈 ⊆ (𝑈𝑊)
123122a1i 11 . . . . . . . . . . . . 13 (𝜑𝑈 ⊆ (𝑈𝑊))
124104, 110, 121, 123fsumless 14988 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝑈 𝐵 ≤ Σ𝑘 ∈ (𝑈𝑊)𝐵)
125117, 5sseldi 3893 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
126 xrge0ge0 41177 . . . . . . . . . . . . . . 15 (𝐶 ∈ (0[,]+∞) → 0 ≤ 𝐶)
127125, 126syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
128109, 127syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 0 ≤ 𝐶)
129 ssun2 4076 . . . . . . . . . . . . . 14 𝑊 ⊆ (𝑈𝑊)
130129a1i 11 . . . . . . . . . . . . 13 (𝜑𝑊 ⊆ (𝑈𝑊))
131104, 111, 128, 130fsumless 14988 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝑊 𝐶 ≤ Σ𝑘 ∈ (𝑈𝑊)𝐶)
13247, 60, 115, 116, 124, 131leadd12dd 41146 . . . . . . . . . . 11 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶))
133110recnd 10522 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐵 ∈ ℂ)
134111recnd 10522 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐶 ∈ ℂ)
135104, 133, 134fsumadd 14933 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) = (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶))
136135eqcomd 2803 . . . . . . . . . . 11 (𝜑 → (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶) = Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
137132, 136breqtrd 4994 . . . . . . . . . 10 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
138137adantr 481 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
13935adantr 481 . . . . . . . . . 10 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
140104, 106elpwd 4468 . . . . . . . . . . . . 13 (𝜑 → (𝑈𝑊) ∈ 𝒫 𝐴)
141140, 104elind 4098 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑊) ∈ (𝒫 𝐴 ∩ Fin))
142113elexd 3460 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ V)
143 sumeq1 14883 . . . . . . . . . . . . 13 (𝑥 = (𝑈𝑊) → Σ𝑘𝑥 (𝐵 + 𝐶) = Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
14433, 143elrnmpt1s 5718 . . . . . . . . . . . 12 (((𝑈𝑊) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ V) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
145141, 142, 144syl2anc 584 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
146145adantr 481 . . . . . . . . . 10 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
147 supxrub 12571 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* ∧ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
148139, 146, 147syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
14999, 114, 100, 138, 148letrd 10650 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
15099, 100, 101, 149leadd1dd 11108 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
151 rexadd 12479 . . . . . . . . 9 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
152100, 101, 151syl2anc 584 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
153152eqcomd 2803 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
154150, 153breqtrd 4994 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15591, 97, 154syl2anc 584 . . . . 5 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15690, 155pm2.61dan 809 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15774, 156eqbrtrd 4990 . . 3 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15815, 63, 40, 66, 157xrltletrd 12408 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) < (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15915, 40, 158xrltled 12397 1 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1525  wcel 2083  wne 2986  wral 3107  Vcvv 3440  cun 3863  cin 3864  wss 3865  𝒫 cpw 4459   class class class wbr 4968  cmpt 5047  ran crn 5451  cfv 6232  (class class class)co 7023  Fincfn 8364  supcsup 8757  cr 10389  0cc0 10390   + caddc 10393  +∞cpnf 10525  -∞cmnf 10526  *cxr 10527   < clt 10528  cle 10529   / cdiv 11151  2c2 11546  +crp 12243   +𝑒 cxad 12359  [,)cico 12594  [,]cicc 12595  Σcsu 14880  Σ^csumge0 42208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-xadd 12362  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881  df-sumge0 42209
This theorem is referenced by:  sge0xaddlem2  42280
  Copyright terms: Public domain W3C validator