Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xaddlem1 Structured version   Visualization version   GIF version

Theorem sge0xaddlem1 43065
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xaddlem1.a (𝜑𝐴𝑉)
sge0xaddlem1.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0xaddlem1.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
sge0xaddlem1.rp (𝜑𝐸 ∈ ℝ+)
sge0xaddlem1.u (𝜑𝑈𝐴)
sge0xaddlem1.ufi (𝜑𝑈 ∈ Fin)
sge0xaddlem1.7 (𝜑𝑊𝐴)
sge0xaddlem1.wfi (𝜑𝑊 ∈ Fin)
sge0xaddlem1.ltb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑈 𝐵 + (𝐸 / 2)))
sge0xaddlem1.ltc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑊 𝐶 + (𝐸 / 2)))
sge0xaddlem1.xr (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
sge0xaddlem1.sb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
sge0xaddlem1.sc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
Assertion
Ref Expression
sge0xaddlem1 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑥,𝐶   𝑈,𝑘,𝑥   𝑘,𝑊,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐸(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem sge0xaddlem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑘𝜑
2 sge0xaddlem1.a . . . . 5 (𝜑𝐴𝑉)
3 sge0xaddlem1.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
41, 2, 3sge0revalmpt 43010 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
5 sge0xaddlem1.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
61, 2, 5sge0revalmpt 43010 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
74, 6oveq12d 7157 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
84eqcomd 2807 . . . . . 6 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = (Σ^‘(𝑘𝐴𝐵)))
9 sge0xaddlem1.sb . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
108, 9eqeltrd 2893 . . . . 5 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
11 sge0xaddlem1.sc . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
126, 11eqeltrrd 2894 . . . . 5 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
1310, 12readdcld 10663 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ)
1413rexrd 10684 . . 3 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ*)
157, 14eqeltrd 2893 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ∈ ℝ*)
16 elinel2 4126 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1716adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
18 simpll 766 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
19 elpwinss 41676 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
2019adantr 484 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝐴)
21 simpr 488 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
2220, 21sseldd 3919 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝐴)
2322adantll 713 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
24 rge0ssre 12838 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
2524, 3sseldi 3916 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
2618, 23, 25syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
2724, 5sseldi 3916 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
2818, 23, 27syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℝ)
2926, 28readdcld 10663 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ ℝ)
3017, 29fsumrecl 15087 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ)
3130rexrd 10684 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
3231ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
33 eqid 2801 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))
3433rnmptss 6867 . . . . 5 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
3532, 34syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
36 supxrcl 12700 . . . 4 (ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
3735, 36syl 17 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
38 sge0xaddlem1.rp . . . 4 (𝜑𝐸 ∈ ℝ+)
3938rpxrd 12424 . . 3 (𝜑𝐸 ∈ ℝ*)
4037, 39xaddcld 12686 . 2 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) ∈ ℝ*)
41 sge0xaddlem1.ufi . . . . . . 7 (𝜑𝑈 ∈ Fin)
42 simpl 486 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝜑)
43 sge0xaddlem1.u . . . . . . . . . 10 (𝜑𝑈𝐴)
4443sselda 3918 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑘𝐴)
4542, 44, 3syl2anc 587 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝐵 ∈ (0[,)+∞))
4624, 45sseldi 3916 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐵 ∈ ℝ)
4741, 46fsumrecl 15087 . . . . . 6 (𝜑 → Σ𝑘𝑈 𝐵 ∈ ℝ)
4838rpred 12423 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
4948rehalfcld 11876 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℝ)
5047, 49readdcld 10663 . . . . 5 (𝜑 → (Σ𝑘𝑈 𝐵 + (𝐸 / 2)) ∈ ℝ)
51 sge0xaddlem1.wfi . . . . . . 7 (𝜑𝑊 ∈ Fin)
5224a1i 11 . . . . . . . 8 ((𝜑𝑘𝑊) → (0[,)+∞) ⊆ ℝ)
53 simpl 486 . . . . . . . . 9 ((𝜑𝑘𝑊) → 𝜑)
54 sge0xaddlem1.7 . . . . . . . . . . 11 (𝜑𝑊𝐴)
5554adantr 484 . . . . . . . . . 10 ((𝜑𝑘𝑊) → 𝑊𝐴)
56 simpr 488 . . . . . . . . . 10 ((𝜑𝑘𝑊) → 𝑘𝑊)
5755, 56sseldd 3919 . . . . . . . . 9 ((𝜑𝑘𝑊) → 𝑘𝐴)
5853, 57, 5syl2anc 587 . . . . . . . 8 ((𝜑𝑘𝑊) → 𝐶 ∈ (0[,)+∞))
5952, 58sseldd 3919 . . . . . . 7 ((𝜑𝑘𝑊) → 𝐶 ∈ ℝ)
6051, 59fsumrecl 15087 . . . . . 6 (𝜑 → Σ𝑘𝑊 𝐶 ∈ ℝ)
6160, 49readdcld 10663 . . . . 5 (𝜑 → (Σ𝑘𝑊 𝐶 + (𝐸 / 2)) ∈ ℝ)
6250, 61readdcld 10663 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ∈ ℝ)
6362rexrd 10684 . . 3 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ∈ ℝ*)
64 sge0xaddlem1.ltb . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑈 𝐵 + (𝐸 / 2)))
65 sge0xaddlem1.ltc . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑊 𝐶 + (𝐸 / 2)))
669, 11, 50, 61, 64, 65ltadd12dd 41968 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) < ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))))
6747recnd 10662 . . . . . 6 (𝜑 → Σ𝑘𝑈 𝐵 ∈ ℂ)
6849recnd 10662 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℂ)
6960recnd 10662 . . . . . 6 (𝜑 → Σ𝑘𝑊 𝐶 ∈ ℂ)
7067, 68, 69, 68add4d 10861 . . . . 5 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + ((𝐸 / 2) + (𝐸 / 2))))
7148recnd 10662 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
72712halvesd 11875 . . . . . 6 (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
7372oveq2d 7155 . . . . 5 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + ((𝐸 / 2) + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸))
7470, 73eqtrd 2836 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸))
7574, 63eqeltrrd 2894 . . . . . . . 8 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ*)
76 pnfxr 10688 . . . . . . . . 9 +∞ ∈ ℝ*
7776a1i 11 . . . . . . . 8 (𝜑 → +∞ ∈ ℝ*)
7874, 62eqeltrrd 2894 . . . . . . . . 9 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ)
79 ltpnf 12507 . . . . . . . . 9 (((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) < +∞)
8078, 79syl 17 . . . . . . . 8 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) < +∞)
8175, 77, 80xrltled 12535 . . . . . . 7 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ +∞)
8281adantr 484 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ +∞)
83 oveq1 7146 . . . . . . . 8 (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞ → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (+∞ +𝑒 𝐸))
8483adantl 485 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (+∞ +𝑒 𝐸))
8548renemnfd 10686 . . . . . . . . 9 (𝜑𝐸 ≠ -∞)
86 xaddpnf2 12612 . . . . . . . . 9 ((𝐸 ∈ ℝ*𝐸 ≠ -∞) → (+∞ +𝑒 𝐸) = +∞)
8739, 85, 86syl2anc 587 . . . . . . . 8 (𝜑 → (+∞ +𝑒 𝐸) = +∞)
8887adantr 484 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → (+∞ +𝑒 𝐸) = +∞)
8984, 88eqtr2d 2837 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → +∞ = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
9082, 89breqtrd 5059 . . . . 5 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
91 simpl 486 . . . . . 6 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → 𝜑)
92 sge0xaddlem1.xr . . . . . . . 8 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
9391, 92syl 17 . . . . . . 7 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
94 neqne 2998 . . . . . . . 8 (¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞)
9594adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞)
96 ge0xrre 42161 . . . . . . 7 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞) ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
9793, 95, 96syl2anc 587 . . . . . 6 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
9847, 60readdcld 10663 . . . . . . . . 9 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ∈ ℝ)
9998adantr 484 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ∈ ℝ)
100 simpr 488 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
10148adantr 484 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → 𝐸 ∈ ℝ)
10241, 51jca 515 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∈ Fin ∧ 𝑊 ∈ Fin))
103 unfi 8773 . . . . . . . . . . . 12 ((𝑈 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑈𝑊) ∈ Fin)
104102, 103syl 17 . . . . . . . . . . 11 (𝜑 → (𝑈𝑊) ∈ Fin)
105 simpl 486 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝜑)
10643, 54unssd 4116 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈𝑊) ⊆ 𝐴)
107106adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑈𝑊)) → (𝑈𝑊) ⊆ 𝐴)
108 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝑘 ∈ (𝑈𝑊))
109107, 108sseldd 3919 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝑘𝐴)
110105, 109, 25syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐵 ∈ ℝ)
111109, 27syldan 594 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐶 ∈ ℝ)
112110, 111readdcld 10663 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑈𝑊)) → (𝐵 + 𝐶) ∈ ℝ)
113104, 112fsumrecl 15087 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ℝ)
114113adantr 484 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ℝ)
115104, 110fsumrecl 15087 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)𝐵 ∈ ℝ)
116104, 111fsumrecl 15087 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)𝐶 ∈ ℝ)
117 icossicc 12818 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ (0[,]+∞)
118117, 3sseldi 3916 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
119 xrge0ge0 41972 . . . . . . . . . . . . . . 15 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
120118, 119syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
121109, 120syldan 594 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 0 ≤ 𝐵)
122 ssun1 4102 . . . . . . . . . . . . . 14 𝑈 ⊆ (𝑈𝑊)
123122a1i 11 . . . . . . . . . . . . 13 (𝜑𝑈 ⊆ (𝑈𝑊))
124104, 110, 121, 123fsumless 15147 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝑈 𝐵 ≤ Σ𝑘 ∈ (𝑈𝑊)𝐵)
125117, 5sseldi 3916 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
126 xrge0ge0 41972 . . . . . . . . . . . . . . 15 (𝐶 ∈ (0[,]+∞) → 0 ≤ 𝐶)
127125, 126syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
128109, 127syldan 594 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 0 ≤ 𝐶)
129 ssun2 4103 . . . . . . . . . . . . . 14 𝑊 ⊆ (𝑈𝑊)
130129a1i 11 . . . . . . . . . . . . 13 (𝜑𝑊 ⊆ (𝑈𝑊))
131104, 111, 128, 130fsumless 15147 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝑊 𝐶 ≤ Σ𝑘 ∈ (𝑈𝑊)𝐶)
13247, 60, 115, 116, 124, 131leadd12dd 41941 . . . . . . . . . . 11 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶))
133110recnd 10662 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐵 ∈ ℂ)
134111recnd 10662 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐶 ∈ ℂ)
135104, 133, 134fsumadd 15092 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) = (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶))
136135eqcomd 2807 . . . . . . . . . . 11 (𝜑 → (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶) = Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
137132, 136breqtrd 5059 . . . . . . . . . 10 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
138137adantr 484 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
13935adantr 484 . . . . . . . . . 10 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
140104, 106elpwd 4508 . . . . . . . . . . . . 13 (𝜑 → (𝑈𝑊) ∈ 𝒫 𝐴)
141140, 104elind 4124 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑊) ∈ (𝒫 𝐴 ∩ Fin))
142113elexd 3464 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ V)
143 sumeq1 15041 . . . . . . . . . . . . 13 (𝑥 = (𝑈𝑊) → Σ𝑘𝑥 (𝐵 + 𝐶) = Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
14433, 143elrnmpt1s 5797 . . . . . . . . . . . 12 (((𝑈𝑊) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ V) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
145141, 142, 144syl2anc 587 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
146145adantr 484 . . . . . . . . . 10 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
147 supxrub 12709 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* ∧ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
148139, 146, 147syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
14999, 114, 100, 138, 148letrd 10790 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
15099, 100, 101, 149leadd1dd 11247 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
151 rexadd 12617 . . . . . . . . 9 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
152100, 101, 151syl2anc 587 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
153152eqcomd 2807 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
154150, 153breqtrd 5059 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15591, 97, 154syl2anc 587 . . . . 5 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15690, 155pm2.61dan 812 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15774, 156eqbrtrd 5055 . . 3 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15815, 63, 40, 66, 157xrltletrd 12546 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) < (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15915, 40, 158xrltled 12535 1 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  Vcvv 3444  cun 3882  cin 3883  wss 3884  𝒫 cpw 4500   class class class wbr 5033  cmpt 5113  ran crn 5524  cfv 6328  (class class class)co 7139  Fincfn 8496  supcsup 8892  cr 10529  0cc0 10530   + caddc 10533  +∞cpnf 10665  -∞cmnf 10666  *cxr 10667   < clt 10668  cle 10669   / cdiv 11290  2c2 11684  +crp 12381   +𝑒 cxad 12497  [,)cico 12732  [,]cicc 12733  Σcsu 15038  Σ^csumge0 42994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-xadd 12500  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-sumge0 42995
This theorem is referenced by:  sge0xaddlem2  43066
  Copyright terms: Public domain W3C validator