|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnffigtmpt | Structured version Visualization version GIF version | ||
| Description: If the generalized sum of nonnegative reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| sge0pnffigtmpt.k | ⊢ Ⅎ𝑘𝜑 | 
| sge0pnffigtmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| sge0pnffigtmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | 
| sge0pnffigtmpt.p | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) | 
| sge0pnffigtmpt.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) | 
| Ref | Expression | 
|---|---|
| sge0pnffigtmpt | ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sge0pnffigtmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0pnffigtmpt.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 3 | sge0pnffigtmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2737 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7137 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) | 
| 6 | sge0pnffigtmpt.p | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) | |
| 7 | sge0pnffigtmpt.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 8 | 1, 5, 6, 7 | sge0pnffigt 46411 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) | 
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) | |
| 10 | elpwinss 45054 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑥 ⊆ 𝐴) | 
| 12 | 11 | resmptd 6058 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) | 
| 13 | 12 | fveq2d 6910 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) = (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) | 
| 14 | 9, 13 | breqtrd 5169 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) | 
| 15 | 14 | ex 412 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → (𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) | 
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) | 
| 17 | 16 | reximdva 3168 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) | 
| 18 | 8, 17 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∃wrex 3070 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 class class class wbr 5143 ↦ cmpt 5225 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 ℝcr 11154 0cc0 11155 +∞cpnf 11292 < clt 11295 [,]cicc 13390 Σ^csumge0 46377 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-sumge0 46378 | 
| This theorem is referenced by: sge0pnffsumgt 46457 | 
| Copyright terms: Public domain | W3C validator |