| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnffigtmpt | Structured version Visualization version GIF version | ||
| Description: If the generalized sum of nonnegative reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| sge0pnffigtmpt.k | ⊢ Ⅎ𝑘𝜑 |
| sge0pnffigtmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0pnffigtmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| sge0pnffigtmpt.p | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
| sge0pnffigtmpt.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| Ref | Expression |
|---|---|
| sge0pnffigtmpt | ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0pnffigtmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0pnffigtmpt.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 3 | sge0pnffigtmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2729 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7089 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 6 | sge0pnffigtmpt.p | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) | |
| 7 | sge0pnffigtmpt.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 8 | 1, 5, 6, 7 | sge0pnffigt 46394 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) |
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) | |
| 10 | elpwinss 45043 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑥 ⊆ 𝐴) |
| 12 | 11 | resmptd 6011 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
| 13 | 12 | fveq2d 6862 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) = (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
| 14 | 9, 13 | breqtrd 5133 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
| 15 | 14 | ex 412 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → (𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) |
| 17 | 16 | reximdva 3146 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) |
| 18 | 8, 17 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 class class class wbr 5107 ↦ cmpt 5188 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℝcr 11067 0cc0 11068 +∞cpnf 11205 < clt 11208 [,]cicc 13309 Σ^csumge0 46360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-sumge0 46361 |
| This theorem is referenced by: sge0pnffsumgt 46440 |
| Copyright terms: Public domain | W3C validator |