![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnffigtmpt | Structured version Visualization version GIF version |
Description: If the generalized sum of nonnegative reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
sge0pnffigtmpt.k | ⊢ Ⅎ𝑘𝜑 |
sge0pnffigtmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0pnffigtmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0pnffigtmpt.p | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
sge0pnffigtmpt.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
Ref | Expression |
---|---|
sge0pnffigtmpt | ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0pnffigtmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0pnffigtmpt.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
3 | sge0pnffigtmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2727 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 7121 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0pnffigtmpt.p | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) | |
7 | sge0pnffigtmpt.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
8 | 1, 5, 6, 7 | sge0pnffigt 45707 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) |
9 | simpr 484 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) | |
10 | elpwinss 44336 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | |
11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑥 ⊆ 𝐴) |
12 | 11 | resmptd 6038 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
13 | 12 | fveq2d 6895 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) = (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
14 | 9, 13 | breqtrd 5168 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
15 | 14 | ex 412 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → (𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) |
16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) |
17 | 16 | reximdva 3163 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) |
18 | 8, 17 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∃wrex 3065 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4598 class class class wbr 5142 ↦ cmpt 5225 ↾ cres 5674 ‘cfv 6542 (class class class)co 7414 Fincfn 8955 ℝcr 11129 0cc0 11130 +∞cpnf 11267 < clt 11270 [,]cicc 13351 Σ^csumge0 45673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-ico 13354 df-icc 13355 df-fz 13509 df-fzo 13652 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-sum 15657 df-sumge0 45674 |
This theorem is referenced by: sge0pnffsumgt 45753 |
Copyright terms: Public domain | W3C validator |