Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnffigtmpt Structured version   Visualization version   GIF version

Theorem sge0pnffigtmpt 46436
Description: If the generalized sum of nonnegative reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0pnffigtmpt.k 𝑘𝜑
sge0pnffigtmpt.a (𝜑𝐴𝑉)
sge0pnffigtmpt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0pnffigtmpt.p (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
sge0pnffigtmpt.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
sge0pnffigtmpt (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘𝑥𝐵)))
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑉(𝑥,𝑘)   𝑌(𝑘)

Proof of Theorem sge0pnffigtmpt
StepHypRef Expression
1 sge0pnffigtmpt.a . . 3 (𝜑𝐴𝑉)
2 sge0pnffigtmpt.k . . . 4 𝑘𝜑
3 sge0pnffigtmpt.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2736 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
52, 3, 4fmptdf 7112 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0pnffigtmpt.p . . 3 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = +∞)
7 sge0pnffigtmpt.y . . 3 (𝜑𝑌 ∈ ℝ)
81, 5, 6, 7sge0pnffigt 46392 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥)))
9 simpr 484 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥)))
10 elpwinss 45040 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1110adantr 480 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥))) → 𝑥𝐴)
1211resmptd 6032 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥))) → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
1312fveq2d 6885 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥))) → (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥)) = (Σ^‘(𝑘𝑥𝐵)))
149, 13breqtrd 5150 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘(𝑘𝑥𝐵)))
1514ex 412 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → (𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘𝑥𝐵))))
1615adantl 481 . . 3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘𝑥𝐵))))
1716reximdva 3154 . 2 (𝜑 → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘𝐴𝐵) ↾ 𝑥)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘𝑥𝐵))))
188, 17mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wrex 3061  cin 3930  wss 3931  𝒫 cpw 4580   class class class wbr 5124  cmpt 5206  cres 5661  cfv 6536  (class class class)co 7410  Fincfn 8964  cr 11133  0cc0 11134  +∞cpnf 11271   < clt 11274  [,]cicc 13370  Σ^csumge0 46358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-sumge0 46359
This theorem is referenced by:  sge0pnffsumgt  46438
  Copyright terms: Public domain W3C validator