![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnffigtmpt | Structured version Visualization version GIF version |
Description: If the generalized sum of nonnegative reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
sge0pnffigtmpt.k | ⊢ Ⅎ𝑘𝜑 |
sge0pnffigtmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0pnffigtmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0pnffigtmpt.p | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
sge0pnffigtmpt.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
Ref | Expression |
---|---|
sge0pnffigtmpt | ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0pnffigtmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0pnffigtmpt.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
3 | sge0pnffigtmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2735 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 7137 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0pnffigtmpt.p | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) | |
7 | sge0pnffigtmpt.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
8 | 1, 5, 6, 7 | sge0pnffigt 46352 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) |
9 | simpr 484 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) | |
10 | elpwinss 44989 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | |
11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑥 ⊆ 𝐴) |
12 | 11 | resmptd 6060 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
13 | 12 | fveq2d 6911 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) = (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
14 | 9, 13 | breqtrd 5174 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
15 | 14 | ex 412 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → (𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) |
16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → 𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) |
17 | 16 | reximdva 3166 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵)))) |
18 | 8, 17 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 ∃wrex 3068 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 class class class wbr 5148 ↦ cmpt 5231 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℝcr 11152 0cc0 11153 +∞cpnf 11290 < clt 11293 [,]cicc 13387 Σ^csumge0 46318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-sumge0 46319 |
This theorem is referenced by: sge0pnffsumgt 46398 |
Copyright terms: Public domain | W3C validator |