Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0le Structured version   Visualization version   GIF version

Theorem sge0le 45109
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0le.x (𝜑𝑋𝑉)
sge0le.F (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0le.g (𝜑𝐺:𝑋⟶(0[,]+∞))
sge0le.le ((𝜑𝑥𝑋) → (𝐹𝑥) ≤ (𝐺𝑥))
Assertion
Ref Expression
sge0le (𝜑 → (Σ^𝐹) ≤ (Σ^𝐺))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0le
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0le.x . . . . . 6 (𝜑𝑋𝑉)
2 sge0le.F . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
31, 2sge0xrcl 45087 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ*)
4 pnfge 13106 . . . . 5 ((Σ^𝐹) ∈ ℝ* → (Σ^𝐹) ≤ +∞)
53, 4syl 17 . . . 4 (𝜑 → (Σ^𝐹) ≤ +∞)
65adantr 481 . . 3 ((𝜑 ∧ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ +∞)
7 id 22 . . . . 5 ((Σ^𝐺) = +∞ → (Σ^𝐺) = +∞)
87eqcomd 2738 . . . 4 ((Σ^𝐺) = +∞ → +∞ = (Σ^𝐺))
98adantl 482 . . 3 ((𝜑 ∧ (Σ^𝐺) = +∞) → +∞ = (Σ^𝐺))
106, 9breqtrd 5173 . 2 ((𝜑 ∧ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ (Σ^𝐺))
11 elinel2 4195 . . . . . . . 8 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin)
1211adantl 482 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin)
132adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
141adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
15 sge0le.g . . . . . . . . . . . . . 14 (𝜑𝐺:𝑋⟶(0[,]+∞))
1615adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐺:𝑋⟶(0[,]+∞))
17 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
182ffnd 6715 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn 𝑋)
19 fvelrnb 6949 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2120adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2217, 21mpbid 231 . . . . . . . . . . . . . 14 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑥𝑋 (𝐹𝑥) = +∞)
23 iccssxr 13403 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]+∞) ⊆ ℝ*
2415ffvelcdmda 7083 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ (0[,]+∞))
2523, 24sselid 3979 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℝ*)
2625adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) ∈ ℝ*)
27 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑥) = +∞ → (𝐹𝑥) = +∞)
2827eqcomd 2738 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑥) = +∞ → +∞ = (𝐹𝑥))
2928adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ = (𝐹𝑥))
30 sge0le.le . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐹𝑥) ≤ (𝐺𝑥))
3130adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐹𝑥) ≤ (𝐺𝑥))
3229, 31eqbrtrd 5169 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ ≤ (𝐺𝑥))
3326, 32xrgepnfd 44027 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) = +∞)
3433eqcomd 2738 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ = (𝐺𝑥))
3515ffnd 6715 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺 Fn 𝑋)
3635adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → 𝐺 Fn 𝑋)
37 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → 𝑥𝑋)
38 fnfvelrn 7079 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Fn 𝑋𝑥𝑋) → (𝐺𝑥) ∈ ran 𝐺)
3936, 37, 38syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ran 𝐺)
4039adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) ∈ ran 𝐺)
4134, 40eqeltrd 2833 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ ∈ ran 𝐺)
4241ex 413 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → ((𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4342adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ +∞ ∈ ran 𝐹) ∧ 𝑥𝑋) → ((𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4443rexlimdva 3155 . . . . . . . . . . . . . 14 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑥𝑋 (𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4522, 44mpd 15 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐺)
4614, 16, 45sge0pnfval 45075 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐺) = +∞)
4746adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ +∞ ∈ ran 𝐹) → (Σ^𝐺) = +∞)
48 simplr 767 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ +∞ ∈ ran 𝐹) → ¬ (Σ^𝐺) = +∞)
4947, 48pm2.65da 815 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ +∞ ∈ ran 𝐹)
5013, 49fge0iccico 45072 . . . . . . . . 9 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐹:𝑋⟶(0[,)+∞))
5150adantr 481 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞))
52 elpwinss 43721 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦𝑋)
5352adantl 482 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦𝑋)
5451, 53fssresd 6755 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑦):𝑦⟶(0[,)+∞))
5512, 54sge0fsum 45089 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) = Σ𝑥𝑦 ((𝐹𝑦)‘𝑥))
56 rge0ssre 13429 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
5754ffvelcdmda 7083 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ∈ (0[,)+∞))
5856, 57sselid 3979 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ∈ ℝ)
5912, 58fsumrecl 15676 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ∈ ℝ)
6055, 59eqeltrd 2833 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ∈ ℝ)
6115adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐺:𝑋⟶(0[,]+∞))
621adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝑋𝑉)
63 simpr 485 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ (Σ^𝐺) = +∞)
6462, 61sge0repnf 45088 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ((Σ^𝐺) ∈ ℝ ↔ ¬ (Σ^𝐺) = +∞))
6563, 64mpbird 256 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐺) ∈ ℝ)
6662, 61, 65sge0rern 45090 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ +∞ ∈ ran 𝐺)
6761, 66fge0iccico 45072 . . . . . . . . 9 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐺:𝑋⟶(0[,)+∞))
6867adantr 481 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,)+∞))
6968, 53fssresd 6755 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺𝑦):𝑦⟶(0[,)+∞))
7012, 69sge0fsum 45089 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) = Σ𝑥𝑦 ((𝐺𝑦)‘𝑥))
7169ffvelcdmda 7083 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) ∈ (0[,)+∞))
7256, 71sselid 3979 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) ∈ ℝ)
7312, 72fsumrecl 15676 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐺𝑦)‘𝑥) ∈ ℝ)
7470, 73eqeltrd 2833 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ∈ ℝ)
7565adantr 481 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐺) ∈ ℝ)
76 simplll 773 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
7753sselda 3981 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝑋)
7876, 77, 30syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (𝐹𝑥) ≤ (𝐺𝑥))
79 fvres 6907 . . . . . . . . . 10 (𝑥𝑦 → ((𝐹𝑦)‘𝑥) = (𝐹𝑥))
8079adantl 482 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) = (𝐹𝑥))
81 fvres 6907 . . . . . . . . . 10 (𝑥𝑦 → ((𝐺𝑦)‘𝑥) = (𝐺𝑥))
8281adantl 482 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) = (𝐺𝑥))
8380, 82breq12d 5160 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (((𝐹𝑦)‘𝑥) ≤ ((𝐺𝑦)‘𝑥) ↔ (𝐹𝑥) ≤ (𝐺𝑥)))
8478, 83mpbird 256 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ≤ ((𝐺𝑦)‘𝑥))
8512, 58, 72, 84fsumle 15741 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ≤ Σ𝑥𝑦 ((𝐺𝑦)‘𝑥))
8655, 70breq12d 5160 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → ((Σ^‘(𝐹𝑦)) ≤ (Σ^‘(𝐺𝑦)) ↔ Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ≤ Σ𝑥𝑦 ((𝐺𝑦)‘𝑥)))
8785, 86mpbird 256 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ≤ (Σ^‘(𝐺𝑦)))
881adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋𝑉)
8915adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,]+∞))
9088, 89sge0less 45094 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ≤ (Σ^𝐺))
9190adantlr 713 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ≤ (Σ^𝐺))
9260, 74, 75, 87, 91letrd 11367 . . . 4 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺))
9392ralrimiva 3146 . . 3 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺))
9462, 61sge0xrcl 45087 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐺) ∈ ℝ*)
9562, 13, 94sge0lefi 45100 . . 3 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ((Σ^𝐹) ≤ (Σ^𝐺) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺)))
9693, 95mpbird 256 . 2 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ (Σ^𝐺))
9710, 96pm2.61dan 811 1 (𝜑 → (Σ^𝐹) ≤ (Σ^𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  cin 3946  wss 3947  𝒫 cpw 4601   class class class wbr 5147  ran crn 5676  cres 5677   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  Fincfn 8935  cr 11105  0cc0 11106  +∞cpnf 11241  *cxr 11243  cle 11245  [,)cico 13322  [,]cicc 13323  Σcsu 15628  Σ^csumge0 45064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-sumge0 45065
This theorem is referenced by:  sge0lempt  45112
  Copyright terms: Public domain W3C validator