Step | Hyp | Ref
| Expression |
1 | | sge0le.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
2 | | sge0le.F |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
3 | 1, 2 | sge0xrcl 43923 |
. . . . 5
⊢ (𝜑 →
(Σ^‘𝐹) ∈
ℝ*) |
4 | | pnfge 12866 |
. . . . 5
⊢
((Σ^‘𝐹) ∈ ℝ* →
(Σ^‘𝐹) ≤ +∞) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 →
(Σ^‘𝐹) ≤ +∞) |
6 | 5 | adantr 481 |
. . 3
⊢ ((𝜑 ∧
(Σ^‘𝐺) = +∞) →
(Σ^‘𝐹) ≤ +∞) |
7 | | id 22 |
. . . . 5
⊢
((Σ^‘𝐺) = +∞ →
(Σ^‘𝐺) = +∞) |
8 | 7 | eqcomd 2744 |
. . . 4
⊢
((Σ^‘𝐺) = +∞ → +∞ =
(Σ^‘𝐺)) |
9 | 8 | adantl 482 |
. . 3
⊢ ((𝜑 ∧
(Σ^‘𝐺) = +∞) → +∞ =
(Σ^‘𝐺)) |
10 | 6, 9 | breqtrd 5100 |
. 2
⊢ ((𝜑 ∧
(Σ^‘𝐺) = +∞) →
(Σ^‘𝐹) ≤
(Σ^‘𝐺)) |
11 | | elinel2 4130 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin) |
12 | 11 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin) |
13 | 2 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) → 𝐹:𝑋⟶(0[,]+∞)) |
14 | 1 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋 ∈ 𝑉) |
15 | | sge0le.g |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:𝑋⟶(0[,]+∞)) |
16 | 15 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐺:𝑋⟶(0[,]+∞)) |
17 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran
𝐹) |
18 | 2 | ffnd 6601 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 Fn 𝑋) |
19 | | fvelrnb 6830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = +∞)) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = +∞)) |
21 | 20 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran
𝐹 ↔ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = +∞)) |
22 | 17, 21 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = +∞) |
23 | | iccssxr 13162 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0[,]+∞) ⊆ ℝ* |
24 | 15 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ (0[,]+∞)) |
25 | 23, 24 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈
ℝ*) |
26 | 25 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = +∞) → (𝐺‘𝑥) ∈
ℝ*) |
27 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑥) = +∞ → (𝐹‘𝑥) = +∞) |
28 | 27 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) = +∞ → +∞ = (𝐹‘𝑥)) |
29 | 28 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = +∞) → +∞ = (𝐹‘𝑥)) |
30 | | sge0le.le |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
31 | 30 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = +∞) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
32 | 29, 31 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = +∞) → +∞ ≤ (𝐺‘𝑥)) |
33 | 26, 32 | xrgepnfd 42870 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = +∞) → (𝐺‘𝑥) = +∞) |
34 | 33 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = +∞) → +∞ = (𝐺‘𝑥)) |
35 | 15 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐺 Fn 𝑋) |
36 | 35 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺 Fn 𝑋) |
37 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
38 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 Fn 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ran 𝐺) |
39 | 36, 37, 38 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ran 𝐺) |
40 | 39 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = +∞) → (𝐺‘𝑥) ∈ ran 𝐺) |
41 | 34, 40 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝐹‘𝑥) = +∞) → +∞ ∈ ran
𝐺) |
42 | 41 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) = +∞ → +∞ ∈ ran 𝐺)) |
43 | 42 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) = +∞ → +∞ ∈ ran 𝐺)) |
44 | 43 | rexlimdva 3213 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = +∞ → +∞ ∈ ran 𝐺)) |
45 | 22, 44 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran
𝐺) |
46 | 14, 16, 45 | sge0pnfval 43911 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) →
(Σ^‘𝐺) = +∞) |
47 | 46 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ +∞ ∈ ran
𝐹) →
(Σ^‘𝐺) = +∞) |
48 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ +∞ ∈ ran
𝐹) → ¬
(Σ^‘𝐺) = +∞) |
49 | 47, 48 | pm2.65da 814 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) → ¬ +∞ ∈
ran 𝐹) |
50 | 13, 49 | fge0iccico 43908 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) → 𝐹:𝑋⟶(0[,)+∞)) |
51 | 50 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞)) |
52 | | elpwinss 42597 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ⊆ 𝑋) |
53 | 52 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ⊆ 𝑋) |
54 | 51, 53 | fssresd 6641 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹 ↾ 𝑦):𝑦⟶(0[,)+∞)) |
55 | 12, 54 | sge0fsum 43925 |
. . . . . 6
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐹 ↾ 𝑦)) = Σ𝑥 ∈ 𝑦 ((𝐹 ↾ 𝑦)‘𝑥)) |
56 | | rge0ssre 13188 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
57 | 54 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝐹 ↾ 𝑦)‘𝑥) ∈ (0[,)+∞)) |
58 | 56, 57 | sselid 3919 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝐹 ↾ 𝑦)‘𝑥) ∈ ℝ) |
59 | 12, 58 | fsumrecl 15446 |
. . . . . 6
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥 ∈ 𝑦 ((𝐹 ↾ 𝑦)‘𝑥) ∈ ℝ) |
60 | 55, 59 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐹 ↾ 𝑦)) ∈ ℝ) |
61 | 15 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) → 𝐺:𝑋⟶(0[,]+∞)) |
62 | 1 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) → 𝑋 ∈ 𝑉) |
63 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) → ¬
(Σ^‘𝐺) = +∞) |
64 | 62, 61 | sge0repnf 43924 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) →
((Σ^‘𝐺) ∈ ℝ ↔ ¬
(Σ^‘𝐺) = +∞)) |
65 | 63, 64 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) →
(Σ^‘𝐺) ∈ ℝ) |
66 | 62, 61, 65 | sge0rern 43926 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) → ¬ +∞ ∈
ran 𝐺) |
67 | 61, 66 | fge0iccico 43908 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) → 𝐺:𝑋⟶(0[,)+∞)) |
68 | 67 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,)+∞)) |
69 | 68, 53 | fssresd 6641 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺 ↾ 𝑦):𝑦⟶(0[,)+∞)) |
70 | 12, 69 | sge0fsum 43925 |
. . . . . 6
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐺 ↾ 𝑦)) = Σ𝑥 ∈ 𝑦 ((𝐺 ↾ 𝑦)‘𝑥)) |
71 | 69 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝐺 ↾ 𝑦)‘𝑥) ∈ (0[,)+∞)) |
72 | 56, 71 | sselid 3919 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝐺 ↾ 𝑦)‘𝑥) ∈ ℝ) |
73 | 12, 72 | fsumrecl 15446 |
. . . . . 6
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥 ∈ 𝑦 ((𝐺 ↾ 𝑦)‘𝑥) ∈ ℝ) |
74 | 70, 73 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐺 ↾ 𝑦)) ∈ ℝ) |
75 | 65 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘𝐺) ∈ ℝ) |
76 | | simplll 772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝜑) |
77 | 53 | sselda 3921 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑋) |
78 | 76, 77, 30 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) |
79 | | fvres 6793 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑦 → ((𝐹 ↾ 𝑦)‘𝑥) = (𝐹‘𝑥)) |
80 | 79 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝐹 ↾ 𝑦)‘𝑥) = (𝐹‘𝑥)) |
81 | | fvres 6793 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑦 → ((𝐺 ↾ 𝑦)‘𝑥) = (𝐺‘𝑥)) |
82 | 81 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝐺 ↾ 𝑦)‘𝑥) = (𝐺‘𝑥)) |
83 | 80, 82 | breq12d 5087 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → (((𝐹 ↾ 𝑦)‘𝑥) ≤ ((𝐺 ↾ 𝑦)‘𝑥) ↔ (𝐹‘𝑥) ≤ (𝐺‘𝑥))) |
84 | 78, 83 | mpbird 256 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → ((𝐹 ↾ 𝑦)‘𝑥) ≤ ((𝐺 ↾ 𝑦)‘𝑥)) |
85 | 12, 58, 72, 84 | fsumle 15511 |
. . . . . 6
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥 ∈ 𝑦 ((𝐹 ↾ 𝑦)‘𝑥) ≤ Σ𝑥 ∈ 𝑦 ((𝐺 ↾ 𝑦)‘𝑥)) |
86 | 55, 70 | breq12d 5087 |
. . . . . 6
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
((Σ^‘(𝐹 ↾ 𝑦)) ≤
(Σ^‘(𝐺 ↾ 𝑦)) ↔ Σ𝑥 ∈ 𝑦 ((𝐹 ↾ 𝑦)‘𝑥) ≤ Σ𝑥 ∈ 𝑦 ((𝐺 ↾ 𝑦)‘𝑥))) |
87 | 85, 86 | mpbird 256 |
. . . . 5
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐹 ↾ 𝑦)) ≤
(Σ^‘(𝐺 ↾ 𝑦))) |
88 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ 𝑉) |
89 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,]+∞)) |
90 | 88, 89 | sge0less 43930 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐺 ↾ 𝑦)) ≤
(Σ^‘𝐺)) |
91 | 90 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐺 ↾ 𝑦)) ≤
(Σ^‘𝐺)) |
92 | 60, 74, 75, 87, 91 | letrd 11132 |
. . . 4
⊢ (((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) →
(Σ^‘(𝐹 ↾ 𝑦)) ≤
(Σ^‘𝐺)) |
93 | 92 | ralrimiva 3103 |
. . 3
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) → ∀𝑦 ∈ (𝒫 𝑋 ∩
Fin)(Σ^‘(𝐹 ↾ 𝑦)) ≤
(Σ^‘𝐺)) |
94 | 62, 61 | sge0xrcl 43923 |
. . . 4
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) →
(Σ^‘𝐺) ∈
ℝ*) |
95 | 62, 13, 94 | sge0lefi 43936 |
. . 3
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) →
((Σ^‘𝐹) ≤
(Σ^‘𝐺) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∩
Fin)(Σ^‘(𝐹 ↾ 𝑦)) ≤
(Σ^‘𝐺))) |
96 | 93, 95 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ ¬
(Σ^‘𝐺) = +∞) →
(Σ^‘𝐹) ≤
(Σ^‘𝐺)) |
97 | 10, 96 | pm2.61dan 810 |
1
⊢ (𝜑 →
(Σ^‘𝐹) ≤
(Σ^‘𝐺)) |