Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0le Structured version   Visualization version   GIF version

Theorem sge0le 42066
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0le.x (𝜑𝑋𝑉)
sge0le.F (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0le.g (𝜑𝐺:𝑋⟶(0[,]+∞))
sge0le.le ((𝜑𝑥𝑋) → (𝐹𝑥) ≤ (𝐺𝑥))
Assertion
Ref Expression
sge0le (𝜑 → (Σ^𝐹) ≤ (Σ^𝐺))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0le
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0le.x . . . . . 6 (𝜑𝑋𝑉)
2 sge0le.F . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
31, 2sge0xrcl 42044 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ*)
4 pnfge 12335 . . . . 5 ((Σ^𝐹) ∈ ℝ* → (Σ^𝐹) ≤ +∞)
53, 4syl 17 . . . 4 (𝜑 → (Σ^𝐹) ≤ +∞)
65adantr 473 . . 3 ((𝜑 ∧ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ +∞)
7 id 22 . . . . 5 ((Σ^𝐺) = +∞ → (Σ^𝐺) = +∞)
87eqcomd 2778 . . . 4 ((Σ^𝐺) = +∞ → +∞ = (Σ^𝐺))
98adantl 474 . . 3 ((𝜑 ∧ (Σ^𝐺) = +∞) → +∞ = (Σ^𝐺))
106, 9breqtrd 4949 . 2 ((𝜑 ∧ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ (Σ^𝐺))
11 elinel2 4057 . . . . . . . 8 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin)
1211adantl 474 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin)
132adantr 473 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
141adantr 473 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
15 sge0le.g . . . . . . . . . . . . . 14 (𝜑𝐺:𝑋⟶(0[,]+∞))
1615adantr 473 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐺:𝑋⟶(0[,]+∞))
17 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
182ffnd 6339 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn 𝑋)
19 fvelrnb 6550 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2120adantr 473 . . . . . . . . . . . . . . 15 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2217, 21mpbid 224 . . . . . . . . . . . . . 14 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑥𝑋 (𝐹𝑥) = +∞)
23 iccssxr 12628 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]+∞) ⊆ ℝ*
2415ffvelrnda 6670 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ (0[,]+∞))
2523, 24sseldi 3852 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℝ*)
2625adantr 473 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) ∈ ℝ*)
27 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑥) = +∞ → (𝐹𝑥) = +∞)
2827eqcomd 2778 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑥) = +∞ → +∞ = (𝐹𝑥))
2928adantl 474 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ = (𝐹𝑥))
30 sge0le.le . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐹𝑥) ≤ (𝐺𝑥))
3130adantr 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐹𝑥) ≤ (𝐺𝑥))
3229, 31eqbrtrd 4945 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ ≤ (𝐺𝑥))
3326, 32xrgepnfd 40974 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) = +∞)
3433eqcomd 2778 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ = (𝐺𝑥))
3515ffnd 6339 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺 Fn 𝑋)
3635adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → 𝐺 Fn 𝑋)
37 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → 𝑥𝑋)
38 fnfvelrn 6667 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Fn 𝑋𝑥𝑋) → (𝐺𝑥) ∈ ran 𝐺)
3936, 37, 38syl2anc 576 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ran 𝐺)
4039adantr 473 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) ∈ ran 𝐺)
4134, 40eqeltrd 2860 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ ∈ ran 𝐺)
4241ex 405 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → ((𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4342adantlr 702 . . . . . . . . . . . . . . 15 (((𝜑 ∧ +∞ ∈ ran 𝐹) ∧ 𝑥𝑋) → ((𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4443rexlimdva 3223 . . . . . . . . . . . . . 14 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑥𝑋 (𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4522, 44mpd 15 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐺)
4614, 16, 45sge0pnfval 42032 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐺) = +∞)
4746adantlr 702 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ +∞ ∈ ran 𝐹) → (Σ^𝐺) = +∞)
48 simplr 756 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ +∞ ∈ ran 𝐹) → ¬ (Σ^𝐺) = +∞)
4947, 48pm2.65da 804 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ +∞ ∈ ran 𝐹)
5013, 49fge0iccico 42029 . . . . . . . . 9 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐹:𝑋⟶(0[,)+∞))
5150adantr 473 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞))
52 elpwinss 40675 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦𝑋)
5352adantl 474 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦𝑋)
5451, 53fssresd 6368 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑦):𝑦⟶(0[,)+∞))
5512, 54sge0fsum 42046 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) = Σ𝑥𝑦 ((𝐹𝑦)‘𝑥))
56 rge0ssre 12653 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
5754ffvelrnda 6670 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ∈ (0[,)+∞))
5856, 57sseldi 3852 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ∈ ℝ)
5912, 58fsumrecl 14941 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ∈ ℝ)
6055, 59eqeltrd 2860 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ∈ ℝ)
6115adantr 473 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐺:𝑋⟶(0[,]+∞))
621adantr 473 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝑋𝑉)
63 simpr 477 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ (Σ^𝐺) = +∞)
6462, 61sge0repnf 42045 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ((Σ^𝐺) ∈ ℝ ↔ ¬ (Σ^𝐺) = +∞))
6563, 64mpbird 249 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐺) ∈ ℝ)
6662, 61, 65sge0rern 42047 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ +∞ ∈ ran 𝐺)
6761, 66fge0iccico 42029 . . . . . . . . 9 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐺:𝑋⟶(0[,)+∞))
6867adantr 473 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,)+∞))
6968, 53fssresd 6368 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺𝑦):𝑦⟶(0[,)+∞))
7012, 69sge0fsum 42046 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) = Σ𝑥𝑦 ((𝐺𝑦)‘𝑥))
7169ffvelrnda 6670 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) ∈ (0[,)+∞))
7256, 71sseldi 3852 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) ∈ ℝ)
7312, 72fsumrecl 14941 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐺𝑦)‘𝑥) ∈ ℝ)
7470, 73eqeltrd 2860 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ∈ ℝ)
7565adantr 473 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐺) ∈ ℝ)
76 simplll 762 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
7753sselda 3854 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝑋)
7876, 77, 30syl2anc 576 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (𝐹𝑥) ≤ (𝐺𝑥))
79 fvres 6512 . . . . . . . . . 10 (𝑥𝑦 → ((𝐹𝑦)‘𝑥) = (𝐹𝑥))
8079adantl 474 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) = (𝐹𝑥))
81 fvres 6512 . . . . . . . . . 10 (𝑥𝑦 → ((𝐺𝑦)‘𝑥) = (𝐺𝑥))
8281adantl 474 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) = (𝐺𝑥))
8380, 82breq12d 4936 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (((𝐹𝑦)‘𝑥) ≤ ((𝐺𝑦)‘𝑥) ↔ (𝐹𝑥) ≤ (𝐺𝑥)))
8478, 83mpbird 249 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ≤ ((𝐺𝑦)‘𝑥))
8512, 58, 72, 84fsumle 15004 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ≤ Σ𝑥𝑦 ((𝐺𝑦)‘𝑥))
8655, 70breq12d 4936 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → ((Σ^‘(𝐹𝑦)) ≤ (Σ^‘(𝐺𝑦)) ↔ Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ≤ Σ𝑥𝑦 ((𝐺𝑦)‘𝑥)))
8785, 86mpbird 249 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ≤ (Σ^‘(𝐺𝑦)))
881adantr 473 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋𝑉)
8915adantr 473 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,]+∞))
9088, 89sge0less 42051 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ≤ (Σ^𝐺))
9190adantlr 702 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ≤ (Σ^𝐺))
9260, 74, 75, 87, 91letrd 10589 . . . 4 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺))
9392ralrimiva 3126 . . 3 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺))
9462, 61sge0xrcl 42044 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐺) ∈ ℝ*)
9562, 13, 94sge0lefi 42057 . . 3 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ((Σ^𝐹) ≤ (Σ^𝐺) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺)))
9693, 95mpbird 249 . 2 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ (Σ^𝐺))
9710, 96pm2.61dan 800 1 (𝜑 → (Σ^𝐹) ≤ (Σ^𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wral 3082  wrex 3083  cin 3824  wss 3825  𝒫 cpw 4416   class class class wbr 4923  ran crn 5401  cres 5402   Fn wfn 6177  wf 6178  cfv 6182  (class class class)co 6970  Fincfn 8298  cr 10326  0cc0 10327  +∞cpnf 10463  *cxr 10465  cle 10467  [,)cico 12549  [,]cicc 12550  Σcsu 14893  Σ^csumge0 42021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-oi 8761  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-rp 12198  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-clim 14696  df-sum 14894  df-sumge0 42022
This theorem is referenced by:  sge0lempt  42069
  Copyright terms: Public domain W3C validator