Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0le Structured version   Visualization version   GIF version

Theorem sge0le 46436
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0le.x (𝜑𝑋𝑉)
sge0le.F (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0le.g (𝜑𝐺:𝑋⟶(0[,]+∞))
sge0le.le ((𝜑𝑥𝑋) → (𝐹𝑥) ≤ (𝐺𝑥))
Assertion
Ref Expression
sge0le (𝜑 → (Σ^𝐹) ≤ (Σ^𝐺))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0le
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0le.x . . . . . 6 (𝜑𝑋𝑉)
2 sge0le.F . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
31, 2sge0xrcl 46414 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ*)
4 pnfge 13146 . . . . 5 ((Σ^𝐹) ∈ ℝ* → (Σ^𝐹) ≤ +∞)
53, 4syl 17 . . . 4 (𝜑 → (Σ^𝐹) ≤ +∞)
65adantr 480 . . 3 ((𝜑 ∧ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ +∞)
7 id 22 . . . . 5 ((Σ^𝐺) = +∞ → (Σ^𝐺) = +∞)
87eqcomd 2741 . . . 4 ((Σ^𝐺) = +∞ → +∞ = (Σ^𝐺))
98adantl 481 . . 3 ((𝜑 ∧ (Σ^𝐺) = +∞) → +∞ = (Σ^𝐺))
106, 9breqtrd 5145 . 2 ((𝜑 ∧ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ (Σ^𝐺))
11 elinel2 4177 . . . . . . . 8 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin)
1211adantl 481 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin)
132adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
141adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
15 sge0le.g . . . . . . . . . . . . . 14 (𝜑𝐺:𝑋⟶(0[,]+∞))
1615adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐺:𝑋⟶(0[,]+∞))
17 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
182ffnd 6707 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn 𝑋)
19 fvelrnb 6939 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2120adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2217, 21mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑥𝑋 (𝐹𝑥) = +∞)
23 iccssxr 13447 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]+∞) ⊆ ℝ*
2415ffvelcdmda 7074 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ (0[,]+∞))
2523, 24sselid 3956 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℝ*)
2625adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) ∈ ℝ*)
27 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑥) = +∞ → (𝐹𝑥) = +∞)
2827eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑥) = +∞ → +∞ = (𝐹𝑥))
2928adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ = (𝐹𝑥))
30 sge0le.le . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐹𝑥) ≤ (𝐺𝑥))
3130adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐹𝑥) ≤ (𝐺𝑥))
3229, 31eqbrtrd 5141 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ ≤ (𝐺𝑥))
3326, 32xrgepnfd 45358 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) = +∞)
3433eqcomd 2741 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ = (𝐺𝑥))
3515ffnd 6707 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺 Fn 𝑋)
3635adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → 𝐺 Fn 𝑋)
37 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → 𝑥𝑋)
38 fnfvelrn 7070 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Fn 𝑋𝑥𝑋) → (𝐺𝑥) ∈ ran 𝐺)
3936, 37, 38syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ran 𝐺)
4039adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) ∈ ran 𝐺)
4134, 40eqeltrd 2834 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ ∈ ran 𝐺)
4241ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → ((𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4342adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ +∞ ∈ ran 𝐹) ∧ 𝑥𝑋) → ((𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4443rexlimdva 3141 . . . . . . . . . . . . . 14 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑥𝑋 (𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4522, 44mpd 15 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐺)
4614, 16, 45sge0pnfval 46402 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐺) = +∞)
4746adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ +∞ ∈ ran 𝐹) → (Σ^𝐺) = +∞)
48 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ +∞ ∈ ran 𝐹) → ¬ (Σ^𝐺) = +∞)
4947, 48pm2.65da 816 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ +∞ ∈ ran 𝐹)
5013, 49fge0iccico 46399 . . . . . . . . 9 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐹:𝑋⟶(0[,)+∞))
5150adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞))
52 elpwinss 45073 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦𝑋)
5352adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦𝑋)
5451, 53fssresd 6745 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑦):𝑦⟶(0[,)+∞))
5512, 54sge0fsum 46416 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) = Σ𝑥𝑦 ((𝐹𝑦)‘𝑥))
56 rge0ssre 13473 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
5754ffvelcdmda 7074 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ∈ (0[,)+∞))
5856, 57sselid 3956 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ∈ ℝ)
5912, 58fsumrecl 15750 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ∈ ℝ)
6055, 59eqeltrd 2834 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ∈ ℝ)
6115adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐺:𝑋⟶(0[,]+∞))
621adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝑋𝑉)
63 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ (Σ^𝐺) = +∞)
6462, 61sge0repnf 46415 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ((Σ^𝐺) ∈ ℝ ↔ ¬ (Σ^𝐺) = +∞))
6563, 64mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐺) ∈ ℝ)
6662, 61, 65sge0rern 46417 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ +∞ ∈ ran 𝐺)
6761, 66fge0iccico 46399 . . . . . . . . 9 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐺:𝑋⟶(0[,)+∞))
6867adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,)+∞))
6968, 53fssresd 6745 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺𝑦):𝑦⟶(0[,)+∞))
7012, 69sge0fsum 46416 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) = Σ𝑥𝑦 ((𝐺𝑦)‘𝑥))
7169ffvelcdmda 7074 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) ∈ (0[,)+∞))
7256, 71sselid 3956 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) ∈ ℝ)
7312, 72fsumrecl 15750 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐺𝑦)‘𝑥) ∈ ℝ)
7470, 73eqeltrd 2834 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ∈ ℝ)
7565adantr 480 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐺) ∈ ℝ)
76 simplll 774 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
7753sselda 3958 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝑋)
7876, 77, 30syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (𝐹𝑥) ≤ (𝐺𝑥))
79 fvres 6895 . . . . . . . . . 10 (𝑥𝑦 → ((𝐹𝑦)‘𝑥) = (𝐹𝑥))
8079adantl 481 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) = (𝐹𝑥))
81 fvres 6895 . . . . . . . . . 10 (𝑥𝑦 → ((𝐺𝑦)‘𝑥) = (𝐺𝑥))
8281adantl 481 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) = (𝐺𝑥))
8380, 82breq12d 5132 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (((𝐹𝑦)‘𝑥) ≤ ((𝐺𝑦)‘𝑥) ↔ (𝐹𝑥) ≤ (𝐺𝑥)))
8478, 83mpbird 257 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ≤ ((𝐺𝑦)‘𝑥))
8512, 58, 72, 84fsumle 15815 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ≤ Σ𝑥𝑦 ((𝐺𝑦)‘𝑥))
8655, 70breq12d 5132 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → ((Σ^‘(𝐹𝑦)) ≤ (Σ^‘(𝐺𝑦)) ↔ Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ≤ Σ𝑥𝑦 ((𝐺𝑦)‘𝑥)))
8785, 86mpbird 257 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ≤ (Σ^‘(𝐺𝑦)))
881adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋𝑉)
8915adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,]+∞))
9088, 89sge0less 46421 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ≤ (Σ^𝐺))
9190adantlr 715 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ≤ (Σ^𝐺))
9260, 74, 75, 87, 91letrd 11392 . . . 4 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺))
9392ralrimiva 3132 . . 3 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺))
9462, 61sge0xrcl 46414 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐺) ∈ ℝ*)
9562, 13, 94sge0lefi 46427 . . 3 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ((Σ^𝐹) ≤ (Σ^𝐺) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺)))
9693, 95mpbird 257 . 2 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ (Σ^𝐺))
9710, 96pm2.61dan 812 1 (𝜑 → (Σ^𝐹) ≤ (Σ^𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926  𝒫 cpw 4575   class class class wbr 5119  ran crn 5655  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  cr 11128  0cc0 11129  +∞cpnf 11266  *cxr 11268  cle 11270  [,)cico 13364  [,]cicc 13365  Σcsu 15702  Σ^csumge0 46391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-sumge0 46392
This theorem is referenced by:  sge0lempt  46439
  Copyright terms: Public domain W3C validator