Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0le Structured version   Visualization version   GIF version

Theorem sge0le 46412
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0le.x (𝜑𝑋𝑉)
sge0le.F (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0le.g (𝜑𝐺:𝑋⟶(0[,]+∞))
sge0le.le ((𝜑𝑥𝑋) → (𝐹𝑥) ≤ (𝐺𝑥))
Assertion
Ref Expression
sge0le (𝜑 → (Σ^𝐹) ≤ (Σ^𝐺))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0le
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0le.x . . . . . 6 (𝜑𝑋𝑉)
2 sge0le.F . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
31, 2sge0xrcl 46390 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ*)
4 pnfge 13097 . . . . 5 ((Σ^𝐹) ∈ ℝ* → (Σ^𝐹) ≤ +∞)
53, 4syl 17 . . . 4 (𝜑 → (Σ^𝐹) ≤ +∞)
65adantr 480 . . 3 ((𝜑 ∧ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ +∞)
7 id 22 . . . . 5 ((Σ^𝐺) = +∞ → (Σ^𝐺) = +∞)
87eqcomd 2736 . . . 4 ((Σ^𝐺) = +∞ → +∞ = (Σ^𝐺))
98adantl 481 . . 3 ((𝜑 ∧ (Σ^𝐺) = +∞) → +∞ = (Σ^𝐺))
106, 9breqtrd 5136 . 2 ((𝜑 ∧ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ (Σ^𝐺))
11 elinel2 4168 . . . . . . . 8 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin)
1211adantl 481 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin)
132adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
141adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
15 sge0le.g . . . . . . . . . . . . . 14 (𝜑𝐺:𝑋⟶(0[,]+∞))
1615adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐺:𝑋⟶(0[,]+∞))
17 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
182ffnd 6692 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn 𝑋)
19 fvelrnb 6924 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2120adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran 𝐹 ↔ ∃𝑥𝑋 (𝐹𝑥) = +∞))
2217, 21mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑥𝑋 (𝐹𝑥) = +∞)
23 iccssxr 13398 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]+∞) ⊆ ℝ*
2415ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ (0[,]+∞))
2523, 24sselid 3947 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℝ*)
2625adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) ∈ ℝ*)
27 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑥) = +∞ → (𝐹𝑥) = +∞)
2827eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑥) = +∞ → +∞ = (𝐹𝑥))
2928adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ = (𝐹𝑥))
30 sge0le.le . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐹𝑥) ≤ (𝐺𝑥))
3130adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐹𝑥) ≤ (𝐺𝑥))
3229, 31eqbrtrd 5132 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ ≤ (𝐺𝑥))
3326, 32xrgepnfd 45334 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) = +∞)
3433eqcomd 2736 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ = (𝐺𝑥))
3515ffnd 6692 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺 Fn 𝑋)
3635adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → 𝐺 Fn 𝑋)
37 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → 𝑥𝑋)
38 fnfvelrn 7055 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Fn 𝑋𝑥𝑋) → (𝐺𝑥) ∈ ran 𝐺)
3936, 37, 38syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ran 𝐺)
4039adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → (𝐺𝑥) ∈ ran 𝐺)
4134, 40eqeltrd 2829 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝐹𝑥) = +∞) → +∞ ∈ ran 𝐺)
4241ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → ((𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4342adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ +∞ ∈ ran 𝐹) ∧ 𝑥𝑋) → ((𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4443rexlimdva 3135 . . . . . . . . . . . . . 14 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑥𝑋 (𝐹𝑥) = +∞ → +∞ ∈ ran 𝐺))
4522, 44mpd 15 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐺)
4614, 16, 45sge0pnfval 46378 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐺) = +∞)
4746adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ +∞ ∈ ran 𝐹) → (Σ^𝐺) = +∞)
48 simplr 768 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ +∞ ∈ ran 𝐹) → ¬ (Σ^𝐺) = +∞)
4947, 48pm2.65da 816 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ +∞ ∈ ran 𝐹)
5013, 49fge0iccico 46375 . . . . . . . . 9 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐹:𝑋⟶(0[,)+∞))
5150adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞))
52 elpwinss 45050 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦𝑋)
5352adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦𝑋)
5451, 53fssresd 6730 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑦):𝑦⟶(0[,)+∞))
5512, 54sge0fsum 46392 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) = Σ𝑥𝑦 ((𝐹𝑦)‘𝑥))
56 rge0ssre 13424 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
5754ffvelcdmda 7059 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ∈ (0[,)+∞))
5856, 57sselid 3947 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ∈ ℝ)
5912, 58fsumrecl 15707 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ∈ ℝ)
6055, 59eqeltrd 2829 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ∈ ℝ)
6115adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐺:𝑋⟶(0[,]+∞))
621adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝑋𝑉)
63 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ (Σ^𝐺) = +∞)
6462, 61sge0repnf 46391 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ((Σ^𝐺) ∈ ℝ ↔ ¬ (Σ^𝐺) = +∞))
6563, 64mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐺) ∈ ℝ)
6662, 61, 65sge0rern 46393 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ¬ +∞ ∈ ran 𝐺)
6761, 66fge0iccico 46375 . . . . . . . . 9 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → 𝐺:𝑋⟶(0[,)+∞))
6867adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,)+∞))
6968, 53fssresd 6730 . . . . . . 7 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺𝑦):𝑦⟶(0[,)+∞))
7012, 69sge0fsum 46392 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) = Σ𝑥𝑦 ((𝐺𝑦)‘𝑥))
7169ffvelcdmda 7059 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) ∈ (0[,)+∞))
7256, 71sselid 3947 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) ∈ ℝ)
7312, 72fsumrecl 15707 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐺𝑦)‘𝑥) ∈ ℝ)
7470, 73eqeltrd 2829 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ∈ ℝ)
7565adantr 480 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐺) ∈ ℝ)
76 simplll 774 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
7753sselda 3949 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝑋)
7876, 77, 30syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (𝐹𝑥) ≤ (𝐺𝑥))
79 fvres 6880 . . . . . . . . . 10 (𝑥𝑦 → ((𝐹𝑦)‘𝑥) = (𝐹𝑥))
8079adantl 481 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) = (𝐹𝑥))
81 fvres 6880 . . . . . . . . . 10 (𝑥𝑦 → ((𝐺𝑦)‘𝑥) = (𝐺𝑥))
8281adantl 481 . . . . . . . . 9 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐺𝑦)‘𝑥) = (𝐺𝑥))
8380, 82breq12d 5123 . . . . . . . 8 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (((𝐹𝑦)‘𝑥) ≤ ((𝐺𝑦)‘𝑥) ↔ (𝐹𝑥) ≤ (𝐺𝑥)))
8478, 83mpbird 257 . . . . . . 7 ((((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → ((𝐹𝑦)‘𝑥) ≤ ((𝐺𝑦)‘𝑥))
8512, 58, 72, 84fsumle 15772 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ≤ Σ𝑥𝑦 ((𝐺𝑦)‘𝑥))
8655, 70breq12d 5123 . . . . . 6 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → ((Σ^‘(𝐹𝑦)) ≤ (Σ^‘(𝐺𝑦)) ↔ Σ𝑥𝑦 ((𝐹𝑦)‘𝑥) ≤ Σ𝑥𝑦 ((𝐺𝑦)‘𝑥)))
8785, 86mpbird 257 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ≤ (Σ^‘(𝐺𝑦)))
881adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋𝑉)
8915adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺:𝑋⟶(0[,]+∞))
9088, 89sge0less 46397 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ≤ (Σ^𝐺))
9190adantlr 715 . . . . 5 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐺𝑦)) ≤ (Σ^𝐺))
9260, 74, 75, 87, 91letrd 11338 . . . 4 (((𝜑 ∧ ¬ (Σ^𝐺) = +∞) ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺))
9392ralrimiva 3126 . . 3 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺))
9462, 61sge0xrcl 46390 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐺) ∈ ℝ*)
9562, 13, 94sge0lefi 46403 . . 3 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → ((Σ^𝐹) ≤ (Σ^𝐺) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑦)) ≤ (Σ^𝐺)))
9693, 95mpbird 257 . 2 ((𝜑 ∧ ¬ (Σ^𝐺) = +∞) → (Σ^𝐹) ≤ (Σ^𝐺))
9710, 96pm2.61dan 812 1 (𝜑 → (Σ^𝐹) ≤ (Σ^𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  𝒫 cpw 4566   class class class wbr 5110  ran crn 5642  cres 5643   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  cr 11074  0cc0 11075  +∞cpnf 11212  *cxr 11214  cle 11216  [,)cico 13315  [,]cicc 13316  Σcsu 15659  Σ^csumge0 46367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-sumge0 46368
This theorem is referenced by:  sge0lempt  46415
  Copyright terms: Public domain W3C validator