| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0gerpmpt | Structured version Visualization version GIF version | ||
| Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0gerpmpt.xph | ⊢ Ⅎ𝑥𝜑 |
| sge0gerpmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0gerpmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| sge0gerpmpt.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| sge0gerpmpt.rp | ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦)) |
| Ref | Expression |
|---|---|
| sge0gerpmpt | ⊢ (𝜑 → 𝐶 ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0gerpmpt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0gerpmpt.xph | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | sge0gerpmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7058 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 6 | sge0gerpmpt.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 7 | sge0gerpmpt.rp | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦)) | |
| 8 | elpwinss 45173 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ⊆ 𝐴) | |
| 9 | 8 | resmptd 5995 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧) = (𝑥 ∈ 𝑧 ↦ 𝐵)) |
| 10 | 9 | eqcomd 2739 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝑥 ∈ 𝑧 ↦ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) |
| 11 | 10 | fveq2d 6834 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) = (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧))) |
| 12 | 11 | oveq1d 7369 | . . . . . . 7 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) = ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦)) |
| 13 | 12 | breq2d 5107 | . . . . . 6 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) ↔ 𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦))) |
| 14 | 13 | biimpd 229 | . . . . 5 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦))) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦))) |
| 16 | 15 | reximdva 3146 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦))) |
| 17 | 7, 16 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦)) |
| 18 | 1, 5, 6, 17 | sge0gerp 46520 | 1 ⊢ (𝜑 → 𝐶 ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2113 ∃wrex 3057 ∩ cin 3897 𝒫 cpw 4551 class class class wbr 5095 ↦ cmpt 5176 ↾ cres 5623 ‘cfv 6488 (class class class)co 7354 Fincfn 8877 0cc0 11015 +∞cpnf 11152 ℝ*cxr 11154 ≤ cle 11156 ℝ+crp 12894 +𝑒 cxad 13013 [,]cicc 13252 Σ^csumge0 46487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-xadd 13016 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-sum 15598 df-sumge0 46488 |
| This theorem is referenced by: sge0iunmptlemre 46540 |
| Copyright terms: Public domain | W3C validator |