![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0gerpmpt | Structured version Visualization version GIF version |
Description: The arbitrary sum of nonnegative extended reals is larger or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0gerpmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0gerpmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0gerpmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0gerpmpt.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
sge0gerpmpt.rp | ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦)) |
Ref | Expression |
---|---|
sge0gerpmpt | ⊢ (𝜑 → 𝐶 ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0gerpmpt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0gerpmpt.xph | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0gerpmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2771 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 6529 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0gerpmpt.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
7 | sge0gerpmpt.rp | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦)) | |
8 | elpwinss 39737 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ⊆ 𝐴) | |
9 | 8 | resmptd 5593 | . . . . . . . . . 10 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧) = (𝑥 ∈ 𝑧 ↦ 𝐵)) |
10 | 9 | eqcomd 2777 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝑥 ∈ 𝑧 ↦ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) |
11 | 10 | fveq2d 6336 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) = (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧))) |
12 | 11 | oveq1d 6808 | . . . . . . 7 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) = ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦)) |
13 | 12 | breq2d 4798 | . . . . . 6 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) ↔ 𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦))) |
14 | 13 | biimpd 219 | . . . . 5 ⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦))) |
15 | 14 | adantl 467 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦))) |
16 | 15 | reximdva 3165 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦))) |
17 | 7, 16 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝑧)) +𝑒 𝑦)) |
18 | 1, 5, 6, 17 | sge0gerp 41129 | 1 ⊢ (𝜑 → 𝐶 ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 Ⅎwnf 1856 ∈ wcel 2145 ∃wrex 3062 ∩ cin 3722 𝒫 cpw 4297 class class class wbr 4786 ↦ cmpt 4863 ↾ cres 5251 ‘cfv 6031 (class class class)co 6793 Fincfn 8109 0cc0 10138 +∞cpnf 10273 ℝ*cxr 10275 ≤ cle 10277 ℝ+crp 12035 +𝑒 cxad 12149 [,]cicc 12383 Σ^csumge0 41096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-xadd 12152 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-sumge0 41097 |
This theorem is referenced by: sge0iunmptlemre 41149 |
Copyright terms: Public domain | W3C validator |