Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gerpmpt Structured version   Visualization version   GIF version

Theorem sge0gerpmpt 43894
Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0gerpmpt.xph 𝑥𝜑
sge0gerpmpt.a (𝜑𝐴𝑉)
sge0gerpmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0gerpmpt.c (𝜑𝐶 ∈ ℝ*)
sge0gerpmpt.rp ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦))
Assertion
Ref Expression
sge0gerpmpt (𝜑𝐶 ≤ (Σ^‘(𝑥𝐴𝐵)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem sge0gerpmpt
StepHypRef Expression
1 sge0gerpmpt.a . 2 (𝜑𝐴𝑉)
2 sge0gerpmpt.xph . . 3 𝑥𝜑
3 sge0gerpmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2739 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6985 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0gerpmpt.c . 2 (𝜑𝐶 ∈ ℝ*)
7 sge0gerpmpt.rp . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦))
8 elpwinss 42550 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
98resmptd 5945 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴𝐵) ↾ 𝑧) = (𝑥𝑧𝐵))
109eqcomd 2745 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝑥𝑧𝐵) = ((𝑥𝐴𝐵) ↾ 𝑧))
1110fveq2d 6772 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘(𝑥𝑧𝐵)) = (Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)))
1211oveq1d 7283 . . . . . . 7 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) = ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦))
1312breq2d 5090 . . . . . 6 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) ↔ 𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
1413biimpd 228 . . . . 5 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
1514adantl 481 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
1615reximdva 3204 . . 3 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
177, 16mpd 15 . 2 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦))
181, 5, 6, 17sge0gerp 43887 1 (𝜑𝐶 ≤ (Σ^‘(𝑥𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1789  wcel 2109  wrex 3066  cin 3890  𝒫 cpw 4538   class class class wbr 5078  cmpt 5161  cres 5590  cfv 6430  (class class class)co 7268  Fincfn 8707  0cc0 10855  +∞cpnf 10990  *cxr 10992  cle 10994  +crp 12712   +𝑒 cxad 12828  [,]cicc 13064  Σ^csumge0 43854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-xadd 12831  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-sum 15379  df-sumge0 43855
This theorem is referenced by:  sge0iunmptlemre  43907
  Copyright terms: Public domain W3C validator