Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gerpmpt Structured version   Visualization version   GIF version

Theorem sge0gerpmpt 42691
Description: The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0gerpmpt.xph 𝑥𝜑
sge0gerpmpt.a (𝜑𝐴𝑉)
sge0gerpmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0gerpmpt.c (𝜑𝐶 ∈ ℝ*)
sge0gerpmpt.rp ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦))
Assertion
Ref Expression
sge0gerpmpt (𝜑𝐶 ≤ (Σ^‘(𝑥𝐴𝐵)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem sge0gerpmpt
StepHypRef Expression
1 sge0gerpmpt.a . 2 (𝜑𝐴𝑉)
2 sge0gerpmpt.xph . . 3 𝑥𝜑
3 sge0gerpmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2823 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6883 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0gerpmpt.c . 2 (𝜑𝐶 ∈ ℝ*)
7 sge0gerpmpt.rp . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦))
8 elpwinss 41318 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
98resmptd 5910 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴𝐵) ↾ 𝑧) = (𝑥𝑧𝐵))
109eqcomd 2829 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝑥𝑧𝐵) = ((𝑥𝐴𝐵) ↾ 𝑧))
1110fveq2d 6676 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘(𝑥𝑧𝐵)) = (Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)))
1211oveq1d 7173 . . . . . . 7 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) = ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦))
1312breq2d 5080 . . . . . 6 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) ↔ 𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
1413biimpd 231 . . . . 5 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
1514adantl 484 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) → 𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
1615reximdva 3276 . . 3 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥𝑧𝐵)) +𝑒 𝑦) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦)))
177, 16mpd 15 . 2 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘((𝑥𝐴𝐵) ↾ 𝑧)) +𝑒 𝑦))
181, 5, 6, 17sge0gerp 42684 1 (𝜑𝐶 ≤ (Σ^‘(𝑥𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wnf 1784  wcel 2114  wrex 3141  cin 3937  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148  cres 5559  cfv 6357  (class class class)co 7158  Fincfn 8511  0cc0 10539  +∞cpnf 10674  *cxr 10676  cle 10678  +crp 12392   +𝑒 cxad 12508  [,]cicc 12744  Σ^csumge0 42651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-sumge0 42652
This theorem is referenced by:  sge0iunmptlemre  42704
  Copyright terms: Public domain W3C validator