Step | Hyp | Ref
| Expression |
1 | | sge0isum.z |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | 1 | fvexi 6740 |
. . . . 5
⊢ 𝑍 ∈ V |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ V) |
4 | | sge0isum.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶(0[,)+∞)) |
5 | | icossicc 13037 |
. . . . . 6
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0[,)+∞) ⊆
(0[,]+∞)) |
7 | 4, 6 | fssd 6572 |
. . . 4
⊢ (𝜑 → 𝐹:𝑍⟶(0[,]+∞)) |
8 | 3, 7 | sge0xrcl 43613 |
. . 3
⊢ (𝜑 →
(Σ^‘𝐹) ∈
ℝ*) |
9 | | sge0isum.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
10 | | sge0isum.g |
. . . . . 6
⊢ 𝐺 = seq𝑀( + , 𝐹) |
11 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
12 | | rge0ssre 13057 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ |
13 | 4 | ffvelrnda 6913 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (0[,)+∞)) |
14 | 12, 13 | sseldi 3908 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
15 | | 0xr 10893 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ∈
ℝ*) |
17 | | pnfxr 10900 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
18 | 17 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → +∞ ∈
ℝ*) |
19 | | icogelb 12999 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝐹‘𝑘) ∈ (0[,)+∞)) → 0 ≤ (𝐹‘𝑘)) |
20 | 16, 18, 13, 19 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
21 | | seqex 13589 |
. . . . . . . . . . 11
⊢ seq𝑀( + , 𝐹) ∈ V |
22 | 10, 21 | eqeltri 2835 |
. . . . . . . . . 10
⊢ 𝐺 ∈ V |
23 | 22 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ V) |
24 | | sge0isum.gcnv |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
25 | | climcl 15073 |
. . . . . . . . . 10
⊢ (𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ) |
26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℂ) |
27 | | breldmg 5787 |
. . . . . . . . 9
⊢ ((𝐺 ∈ V ∧ 𝐵 ∈ ℂ ∧ 𝐺 ⇝ 𝐵) → 𝐺 ∈ dom ⇝ ) |
28 | 23, 26, 24, 27 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ dom ⇝ ) |
29 | 10 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐺 = seq𝑀( + , 𝐹)) |
30 | 29 | fveq1d 6728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗)) |
31 | 1 | eleq2i 2830 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ 𝑍 ↔ 𝑗 ∈ (ℤ≥‘𝑀)) |
32 | 31 | biimpi 219 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑀)) |
33 | 32 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
34 | | simpll 767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑) |
35 | | elfzuz 13121 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ≥‘𝑀)) |
36 | 35, 1 | eleqtrrdi 2850 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ 𝑍) |
37 | 36 | adantl 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘 ∈ 𝑍) |
38 | 34, 37, 14 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
39 | | readdcl 10825 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑘 + 𝑖) ∈ ℝ) |
40 | 39 | adantl 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ) |
41 | 33, 38, 40 | seqcl 13609 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ) |
42 | 30, 41 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℝ) |
43 | 42 | recnd 10874 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ ℂ) |
44 | 43 | ralrimiva 3106 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ∈ ℂ) |
45 | 1 | climbdd 15248 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝐺 ∈ dom ⇝ ∧
∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐺‘𝑗)) ≤ 𝑥) |
46 | 9, 28, 44, 45 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐺‘𝑗)) ≤ 𝑥) |
47 | 42 | ad4ant13 751 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ (abs‘(𝐺‘𝑗)) ≤ 𝑥) → (𝐺‘𝑗) ∈ ℝ) |
48 | 43 | ad4ant13 751 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ (abs‘(𝐺‘𝑗)) ≤ 𝑥) → (𝐺‘𝑗) ∈ ℂ) |
49 | 48 | abscld 15013 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ (abs‘(𝐺‘𝑗)) ≤ 𝑥) → (abs‘(𝐺‘𝑗)) ∈ ℝ) |
50 | | simpllr 776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ (abs‘(𝐺‘𝑗)) ≤ 𝑥) → 𝑥 ∈ ℝ) |
51 | 47 | leabsd 14991 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ (abs‘(𝐺‘𝑗)) ≤ 𝑥) → (𝐺‘𝑗) ≤ (abs‘(𝐺‘𝑗))) |
52 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ (abs‘(𝐺‘𝑗)) ≤ 𝑥) → (abs‘(𝐺‘𝑗)) ≤ 𝑥) |
53 | 47, 49, 50, 51, 52 | letrd 11002 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ (abs‘(𝐺‘𝑗)) ≤ 𝑥) → (𝐺‘𝑗) ≤ 𝑥) |
54 | 53 | ex 416 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → ((abs‘(𝐺‘𝑗)) ≤ 𝑥 → (𝐺‘𝑗) ≤ 𝑥)) |
55 | 54 | ralimdva 3101 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑗 ∈ 𝑍 (abs‘(𝐺‘𝑗)) ≤ 𝑥 → ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥)) |
56 | 55 | reximdva 3200 |
. . . . . . 7
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (abs‘(𝐺‘𝑗)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥)) |
57 | 46, 56 | mpd 15 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) |
58 | 1, 10, 9, 11, 14, 20, 57 | isumsup2 15423 |
. . . . 5
⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) |
59 | 1, 9, 58, 42 | climrecl 15157 |
. . . 4
⊢ (𝜑 → sup(ran 𝐺, ℝ, < ) ∈
ℝ) |
60 | 59 | rexrd 10896 |
. . 3
⊢ (𝜑 → sup(ran 𝐺, ℝ, < ) ∈
ℝ*) |
61 | 4 | feqmptd 6789 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
62 | 61 | fveq2d 6730 |
. . . 4
⊢ (𝜑 →
(Σ^‘𝐹) =
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
63 | | mpteq1 5152 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘)) = (𝑘 ∈ ∅ ↦ (𝐹‘𝑘))) |
64 | 63 | fveq2d 6730 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) =
(Σ^‘(𝑘 ∈ ∅ ↦ (𝐹‘𝑘)))) |
65 | | mpt0 6529 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ∅ ↦ (𝐹‘𝑘)) = ∅ |
66 | 65 | fveq2i 6729 |
. . . . . . . . . . . 12
⊢
(Σ^‘(𝑘 ∈ ∅ ↦ (𝐹‘𝑘))) =
(Σ^‘∅) |
67 | | sge00 43604 |
. . . . . . . . . . . 12
⊢
(Σ^‘∅) = 0 |
68 | 66, 67 | eqtri 2766 |
. . . . . . . . . . 11
⊢
(Σ^‘(𝑘 ∈ ∅ ↦ (𝐹‘𝑘))) = 0 |
69 | 68 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ →
(Σ^‘(𝑘 ∈ ∅ ↦ (𝐹‘𝑘))) = 0) |
70 | 64, 69 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑦 = ∅ →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) = 0) |
71 | 70 | adantl 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) = 0) |
72 | | 0red 10849 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℝ) |
73 | 39 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ) |
74 | 1, 9, 14, 73 | seqf 13610 |
. . . . . . . . . . . . 13
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
75 | 10 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 = seq𝑀( + , 𝐹)) |
76 | 75 | feq1d 6539 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ)) |
77 | 74, 76 | mpbird 260 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
78 | 77 | frnd 6562 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐺 ⊆ ℝ) |
79 | 77 | ffund 6558 |
. . . . . . . . . . . 12
⊢ (𝜑 → Fun 𝐺) |
80 | | uzid 12466 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
81 | 9, 80 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
82 | 1 | eqcomi 2747 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘𝑀) = 𝑍 |
83 | 81, 82 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
84 | 77 | fdmd 6565 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐺 = 𝑍) |
85 | 84 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 = dom 𝐺) |
86 | 83, 85 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ dom 𝐺) |
87 | | fvelrn 6906 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐺 ∧ 𝑀 ∈ dom 𝐺) → (𝐺‘𝑀) ∈ ran 𝐺) |
88 | 79, 86, 87 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘𝑀) ∈ ran 𝐺) |
89 | 78, 88 | sseldd 3911 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝑀) ∈ ℝ) |
90 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
ℝ*) |
91 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → +∞ ∈
ℝ*) |
92 | 4, 83 | ffvelrnd 6914 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘𝑀) ∈ (0[,)+∞)) |
93 | | icogelb 12999 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝐹‘𝑀) ∈ (0[,)+∞)) → 0 ≤
(𝐹‘𝑀)) |
94 | 90, 91, 92, 93 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ (𝐹‘𝑀)) |
95 | 10 | fveq1i 6727 |
. . . . . . . . . . . . 13
⊢ (𝐺‘𝑀) = (seq𝑀( + , 𝐹)‘𝑀) |
96 | 95 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘𝑀) = (seq𝑀( + , 𝐹)‘𝑀)) |
97 | | seq1 13600 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
98 | 9, 97 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
99 | 96, 98 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑀) = (𝐺‘𝑀)) |
100 | 94, 99 | breqtrd 5088 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (𝐺‘𝑀)) |
101 | 88 | ne0d 4259 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐺 ≠ ∅) |
102 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ran 𝐺) |
103 | 77 | ffnd 6555 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺 Fn 𝑍) |
104 | | fvelrnb 6782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺 Fn 𝑍 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧)) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧)) |
106 | 105 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧)) |
107 | 102, 106 | mpbid 235 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧) |
108 | 107 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → ∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧) |
109 | | nfv 1922 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗𝜑 |
110 | | nfra1 3141 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥 |
111 | 109, 110 | nfan 1907 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗(𝜑 ∧ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) |
112 | | nfv 1922 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗 𝑧 ∈ ran 𝐺 |
113 | 111, 112 | nfan 1907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗((𝜑 ∧ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) |
114 | | nfv 1922 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗 𝑧 ≤ 𝑥 |
115 | | rspa 3129 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∀𝑗 ∈
𝑍 (𝐺‘𝑗) ≤ 𝑥 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ≤ 𝑥) |
116 | 115 | 3adant3 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑗 ∈
𝑍 (𝐺‘𝑗) ≤ 𝑥 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → (𝐺‘𝑗) ≤ 𝑥) |
117 | | simp3 1140 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑗 ∈
𝑍 (𝐺‘𝑗) ≤ 𝑥 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → (𝐺‘𝑗) = 𝑧) |
118 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺‘𝑗) = 𝑧 → (𝐺‘𝑗) = 𝑧) |
119 | 118 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺‘𝑗) = 𝑧 → 𝑧 = (𝐺‘𝑗)) |
120 | 119 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺‘𝑗) ≤ 𝑥 ∧ (𝐺‘𝑗) = 𝑧) → 𝑧 = (𝐺‘𝑗)) |
121 | | simpl 486 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺‘𝑗) ≤ 𝑥 ∧ (𝐺‘𝑗) = 𝑧) → (𝐺‘𝑗) ≤ 𝑥) |
122 | 120, 121 | eqbrtrd 5084 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺‘𝑗) ≤ 𝑥 ∧ (𝐺‘𝑗) = 𝑧) → 𝑧 ≤ 𝑥) |
123 | 116, 117,
122 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑗 ∈
𝑍 (𝐺‘𝑗) ≤ 𝑥 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → 𝑧 ≤ 𝑥) |
124 | 123 | 3exp 1121 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑗 ∈
𝑍 (𝐺‘𝑗) ≤ 𝑥 → (𝑗 ∈ 𝑍 → ((𝐺‘𝑗) = 𝑧 → 𝑧 ≤ 𝑥))) |
125 | 124 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → (𝑗 ∈ 𝑍 → ((𝐺‘𝑗) = 𝑧 → 𝑧 ≤ 𝑥))) |
126 | 113, 114,
125 | rexlimd 3243 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → (∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧 → 𝑧 ≤ 𝑥)) |
127 | 108, 126 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ≤ 𝑥) |
128 | 127 | ralrimiva 3106 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) → ∀𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥) |
129 | 128 | ex 416 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥)) |
130 | 129 | reximdv 3199 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥)) |
131 | 57, 130 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥) |
132 | | suprub 11806 |
. . . . . . . . . . 11
⊢ (((ran
𝐺 ⊆ ℝ ∧ ran
𝐺 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥) ∧ (𝐺‘𝑀) ∈ ran 𝐺) → (𝐺‘𝑀) ≤ sup(ran 𝐺, ℝ, < )) |
133 | 78, 101, 131, 88, 132 | syl31anc 1375 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝑀) ≤ sup(ran 𝐺, ℝ, < )) |
134 | 72, 89, 59, 100, 133 | letrd 11002 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ sup(ran 𝐺, ℝ, <
)) |
135 | 134 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → 0 ≤ sup(ran 𝐺, ℝ, <
)) |
136 | 71, 135 | eqbrtrd 5084 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) ≤ sup(ran 𝐺, ℝ, < )) |
137 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) |
138 | | simpll 767 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝜑) |
139 | | elpwinss 42285 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ 𝑍) |
140 | 139 | sselda 3910 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝑍) |
141 | 140 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝑍) |
142 | 5, 13 | sseldi 3908 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (0[,]+∞)) |
143 | 138, 141,
142 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (𝐹‘𝑘) ∈ (0[,]+∞)) |
144 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘)) |
145 | 143, 144 | fmptd 6940 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘)):𝑦⟶(0[,]+∞)) |
146 | 137, 145 | sge0xrcl 43613 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) ∈
ℝ*) |
147 | 146 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) ∈
ℝ*) |
148 | | fzfid 13559 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑀...sup(𝑦, ℝ, < )) ∈
Fin) |
149 | | elfzuz 13121 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) → 𝑘 ∈ (ℤ≥‘𝑀)) |
150 | 149, 82 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) → 𝑘 ∈ 𝑍) |
151 | 150, 142 | sylan2 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹‘𝑘) ∈ (0[,]+∞)) |
152 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘)) = (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘)) |
153 | 151, 152 | fmptd 6940 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘)):(𝑀...sup(𝑦, ℝ, <
))⟶(0[,]+∞)) |
154 | 153 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘)):(𝑀...sup(𝑦, ℝ, <
))⟶(0[,]+∞)) |
155 | 148, 154 | sge0xrcl 43613 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘))) ∈
ℝ*) |
156 | 155 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘))) ∈
ℝ*) |
157 | 60 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → sup(ran 𝐺, ℝ, < ) ∈
ℝ*) |
158 | 157 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(ran 𝐺, ℝ, < ) ∈
ℝ*) |
159 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → 𝜑) |
160 | 150 | adantl 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → 𝑘 ∈ 𝑍) |
161 | 159, 160,
142 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹‘𝑘) ∈ (0[,]+∞)) |
162 | | elinel2 4119 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ∈ Fin) |
163 | 1, 139, 162 | ssuzfz 42576 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ (𝑀...sup(𝑦, ℝ, < ))) |
164 | 163 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑦 ⊆ (𝑀...sup(𝑦, ℝ, < ))) |
165 | 148, 161,
164 | sge0lessmpt 43627 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) ≤
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘)))) |
166 | 165 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) ≤
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘)))) |
167 | 78 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ran 𝐺 ⊆ ℝ) |
168 | 167 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ran 𝐺 ⊆ ℝ) |
169 | 101 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ran 𝐺 ≠ ∅) |
170 | 169 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ran 𝐺 ≠ ∅) |
171 | 131 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥) |
172 | 171 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥) |
173 | 159, 160,
13 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹‘𝑘) ∈ (0[,)+∞)) |
174 | 148, 173 | sge0fsummpt 43618 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘))) = Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹‘𝑘)) |
175 | 174 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘))) = Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹‘𝑘)) |
176 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
177 | 139, 1 | sseqtrdi 3960 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆
(ℤ≥‘𝑀)) |
178 | 177 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆
(ℤ≥‘𝑀)) |
179 | | uzssz 12472 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
180 | 1, 179 | eqsstri 3944 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑍 ⊆
ℤ |
181 | 139, 180 | sstrdi 3922 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆
ℤ) |
182 | 181 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆
ℤ) |
183 | | neqne 2949 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑦 = ∅ → 𝑦 ≠ ∅) |
184 | 183 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅) |
185 | 162 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ Fin) |
186 | | suprfinzcl 12305 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin) → sup(𝑦, ℝ, < ) ∈ 𝑦) |
187 | 182, 184,
185, 186 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ 𝑦) |
188 | 178, 187 | sseldd 3911 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈
(ℤ≥‘𝑀)) |
189 | 188 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈
(ℤ≥‘𝑀)) |
190 | 14 | recnd 10874 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
191 | 159, 160,
190 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹‘𝑘) ∈ ℂ) |
192 | 191 | adantlr 715 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹‘𝑘) ∈ ℂ) |
193 | 176, 189,
192 | fsumser 15307 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹‘𝑘) = (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < ))) |
194 | 10 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ seq𝑀( + , 𝐹) = 𝐺 |
195 | 194 | fveq1i 6727 |
. . . . . . . . . . . 12
⊢ (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )) = (𝐺‘sup(𝑦, ℝ, < )) |
196 | 195 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )) = (𝐺‘sup(𝑦, ℝ, < ))) |
197 | 175, 193,
196 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘))) = (𝐺‘sup(𝑦, ℝ, < ))) |
198 | 79 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → Fun 𝐺) |
199 | 198 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → Fun 𝐺) |
200 | 189, 82 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ 𝑍) |
201 | 85 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → 𝑍 = dom 𝐺) |
202 | 200, 201 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ dom 𝐺) |
203 | | fvelrn 6906 |
. . . . . . . . . . 11
⊢ ((Fun
𝐺 ∧ sup(𝑦, ℝ, < ) ∈ dom
𝐺) → (𝐺‘sup(𝑦, ℝ, < )) ∈ ran 𝐺) |
204 | 199, 202,
203 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (𝐺‘sup(𝑦, ℝ, < )) ∈ ran 𝐺) |
205 | 197, 204 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘))) ∈ ran 𝐺) |
206 | | suprub 11806 |
. . . . . . . . 9
⊢ (((ran
𝐺 ⊆ ℝ ∧ ran
𝐺 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥) ∧
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘))) ∈ ran 𝐺) →
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘))) ≤ sup(ran 𝐺, ℝ, < )) |
207 | 168, 170,
172, 205, 206 | syl31anc 1375 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹‘𝑘))) ≤ sup(ran 𝐺, ℝ, < )) |
208 | 147, 156,
158, 166, 207 | xrletrd 12765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) ≤ sup(ran 𝐺, ℝ, < )) |
209 | 136, 208 | pm2.61dan 813 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑍 ∩ Fin)) →
(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) ≤ sup(ran 𝐺, ℝ, < )) |
210 | 209 | ralrimiva 3106 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ (𝒫 𝑍 ∩
Fin)(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) ≤ sup(ran 𝐺, ℝ, < )) |
211 | | nfv 1922 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
212 | 211, 3, 142, 60 | sge0lefimpt 43651 |
. . . . 5
⊢ (𝜑 →
((Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ≤ sup(ran 𝐺, ℝ, < ) ↔ ∀𝑦 ∈ (𝒫 𝑍 ∩
Fin)(Σ^‘(𝑘 ∈ 𝑦 ↦ (𝐹‘𝑘))) ≤ sup(ran 𝐺, ℝ, < ))) |
213 | 210, 212 | mpbird 260 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ≤ sup(ran 𝐺, ℝ, < )) |
214 | 62, 213 | eqbrtrd 5084 |
. . 3
⊢ (𝜑 →
(Σ^‘𝐹) ≤ sup(ran 𝐺, ℝ, < )) |
215 | 36 | ssriv 3914 |
. . . . . . . . . . . . 13
⊢ (𝑀...𝑗) ⊆ 𝑍 |
216 | 215 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀...𝑗) ⊆ 𝑍) |
217 | 3, 142, 216 | sge0lessmpt 43627 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) ≤
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
218 | 217 | 3ad2ant1 1135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) ≤
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
219 | | fzfid 13559 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀...𝑗) ∈ Fin) |
220 | 36, 13 | sylan2 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ (0[,)+∞)) |
221 | 219, 220 | sge0fsummpt 43618 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
222 | 221 | 3ad2ant1 1135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
223 | 34, 37, 11 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
224 | 34, 37, 190 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
225 | 223, 33, 224 | fsumser 15307 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) = (seq𝑀( + , 𝐹)‘𝑗)) |
226 | 225 | 3adant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) = (seq𝑀( + , 𝐹)‘𝑗)) |
227 | 222, 226 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) = (seq𝑀( + , 𝐹)‘𝑗)) |
228 | 194 | fveq1i 6727 |
. . . . . . . . . . . . 13
⊢ (seq𝑀( + , 𝐹)‘𝑗) = (𝐺‘𝑗) |
229 | 228 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → (seq𝑀( + , 𝐹)‘𝑗) = (𝐺‘𝑗)) |
230 | | simp3 1140 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → (𝐺‘𝑗) = 𝑧) |
231 | 227, 229,
230 | 3eqtrrd 2783 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → 𝑧 =
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘)))) |
232 | 62 | 3ad2ant1 1135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) →
(Σ^‘𝐹) =
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
233 | 231, 232 | breq12d 5075 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → (𝑧 ≤
(Σ^‘𝐹) ↔
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) ≤
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))))) |
234 | 218, 233 | mpbird 260 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → 𝑧 ≤
(Σ^‘𝐹)) |
235 | 234 | 3exp 1121 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ 𝑍 → ((𝐺‘𝑗) = 𝑧 → 𝑧 ≤
(Σ^‘𝐹)))) |
236 | 235 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (𝑗 ∈ 𝑍 → ((𝐺‘𝑗) = 𝑧 → 𝑧 ≤
(Σ^‘𝐹)))) |
237 | 236 | rexlimdv 3209 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧 → 𝑧 ≤
(Σ^‘𝐹))) |
238 | 107, 237 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ≤
(Σ^‘𝐹)) |
239 | 238 | ralrimiva 3106 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤
(Σ^‘𝐹)) |
240 | 3, 7 | sge0cl 43609 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘𝐹) ∈ (0[,]+∞)) |
241 | 59 | ltpnfd 12726 |
. . . . . . . . 9
⊢ (𝜑 → sup(ran 𝐺, ℝ, < ) <
+∞) |
242 | 8, 60, 91, 214, 241 | xrlelttrd 12763 |
. . . . . . . 8
⊢ (𝜑 →
(Σ^‘𝐹) < +∞) |
243 | 8, 91, 242 | xrgtned 42549 |
. . . . . . 7
⊢ (𝜑 → +∞ ≠
(Σ^‘𝐹)) |
244 | 243 | necomd 2997 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘𝐹) ≠ +∞) |
245 | | ge0xrre 42759 |
. . . . . 6
⊢
(((Σ^‘𝐹) ∈ (0[,]+∞) ∧
(Σ^‘𝐹) ≠ +∞) →
(Σ^‘𝐹) ∈ ℝ) |
246 | 240, 244,
245 | syl2anc 587 |
. . . . 5
⊢ (𝜑 →
(Σ^‘𝐹) ∈ ℝ) |
247 | | suprleub 11811 |
. . . . 5
⊢ (((ran
𝐺 ⊆ ℝ ∧ ran
𝐺 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥) ∧
(Σ^‘𝐹) ∈ ℝ) → (sup(ran 𝐺, ℝ, < ) ≤
(Σ^‘𝐹) ↔ ∀𝑧 ∈ ran 𝐺 𝑧 ≤
(Σ^‘𝐹))) |
248 | 78, 101, 131, 246, 247 | syl31anc 1375 |
. . . 4
⊢ (𝜑 → (sup(ran 𝐺, ℝ, < ) ≤
(Σ^‘𝐹) ↔ ∀𝑧 ∈ ran 𝐺 𝑧 ≤
(Σ^‘𝐹))) |
249 | 239, 248 | mpbird 260 |
. . 3
⊢ (𝜑 → sup(ran 𝐺, ℝ, < ) ≤
(Σ^‘𝐹)) |
250 | 8, 60, 214, 249 | xrletrid 12758 |
. 2
⊢ (𝜑 →
(Σ^‘𝐹) = sup(ran 𝐺, ℝ, < )) |
251 | | climuni 15126 |
. . 3
⊢ ((𝐺 ⇝ 𝐵 ∧ 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) → 𝐵 = sup(ran 𝐺, ℝ, < )) |
252 | 24, 58, 251 | syl2anc 587 |
. 2
⊢ (𝜑 → 𝐵 = sup(ran 𝐺, ℝ, < )) |
253 | 250, 252 | eqtr4d 2781 |
1
⊢ (𝜑 →
(Σ^‘𝐹) = 𝐵) |