Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0isum Structured version   Visualization version   GIF version

Theorem sge0isum 46432
Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0isum.m (𝜑𝑀 ∈ ℤ)
sge0isum.z 𝑍 = (ℤ𝑀)
sge0isum.f (𝜑𝐹:𝑍⟶(0[,)+∞))
sge0isum.g 𝐺 = seq𝑀( + , 𝐹)
sge0isum.gcnv (𝜑𝐺𝐵)
Assertion
Ref Expression
sge0isum (𝜑 → (Σ^𝐹) = 𝐵)

Proof of Theorem sge0isum
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0isum.z . . . . . 6 𝑍 = (ℤ𝑀)
21fvexi 6875 . . . . 5 𝑍 ∈ V
32a1i 11 . . . 4 (𝜑𝑍 ∈ V)
4 sge0isum.f . . . . 5 (𝜑𝐹:𝑍⟶(0[,)+∞))
5 icossicc 13404 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
65a1i 11 . . . . 5 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
74, 6fssd 6708 . . . 4 (𝜑𝐹:𝑍⟶(0[,]+∞))
83, 7sge0xrcl 46390 . . 3 (𝜑 → (Σ^𝐹) ∈ ℝ*)
9 sge0isum.m . . . . 5 (𝜑𝑀 ∈ ℤ)
10 sge0isum.g . . . . . 6 𝐺 = seq𝑀( + , 𝐹)
11 eqidd 2731 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
12 rge0ssre 13424 . . . . . . 7 (0[,)+∞) ⊆ ℝ
134ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
1412, 13sselid 3947 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
15 0xr 11228 . . . . . . . 8 0 ∈ ℝ*
1615a1i 11 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
17 pnfxr 11235 . . . . . . . 8 +∞ ∈ ℝ*
1817a1i 11 . . . . . . 7 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
19 icogelb 13364 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑘) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑘))
2016, 18, 13, 19syl3anc 1373 . . . . . 6 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
21 seqex 13975 . . . . . . . . . . 11 seq𝑀( + , 𝐹) ∈ V
2210, 21eqeltri 2825 . . . . . . . . . 10 𝐺 ∈ V
2322a1i 11 . . . . . . . . 9 (𝜑𝐺 ∈ V)
24 sge0isum.gcnv . . . . . . . . . 10 (𝜑𝐺𝐵)
25 climcl 15472 . . . . . . . . . 10 (𝐺𝐵𝐵 ∈ ℂ)
2624, 25syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
27 breldmg 5876 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐵 ∈ ℂ ∧ 𝐺𝐵) → 𝐺 ∈ dom ⇝ )
2823, 26, 24, 27syl3anc 1373 . . . . . . . 8 (𝜑𝐺 ∈ dom ⇝ )
2910a1i 11 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝐺 = seq𝑀( + , 𝐹))
3029fveq1d 6863 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐺𝑗) = (seq𝑀( + , 𝐹)‘𝑗))
311eleq2i 2821 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
3231biimpi 216 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
3332adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
34 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
35 elfzuz 13488 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3635, 1eleqtrrdi 2840 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3736adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
3834, 37, 14syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
39 readdcl 11158 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑘 + 𝑖) ∈ ℝ)
4039adantl 481 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
4133, 38, 40seqcl 13994 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
4230, 41eqeltrd 2829 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℝ)
4342recnd 11209 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
4443ralrimiva 3126 . . . . . . . 8 (𝜑 → ∀𝑗𝑍 (𝐺𝑗) ∈ ℂ)
451climbdd 15645 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐺 ∈ dom ⇝ ∧ ∀𝑗𝑍 (𝐺𝑗) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥)
469, 28, 44, 45syl3anc 1373 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥)
4742ad4ant13 751 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ∈ ℝ)
4843ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ∈ ℂ)
4948abscld 15412 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (abs‘(𝐺𝑗)) ∈ ℝ)
50 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → 𝑥 ∈ ℝ)
5147leabsd 15388 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ≤ (abs‘(𝐺𝑗)))
52 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (abs‘(𝐺𝑗)) ≤ 𝑥)
5347, 49, 50, 51, 52letrd 11338 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ≤ 𝑥)
5453ex 412 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → ((abs‘(𝐺𝑗)) ≤ 𝑥 → (𝐺𝑗) ≤ 𝑥))
5554ralimdva 3146 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥 → ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥))
5655reximdva 3147 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥))
5746, 56mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥)
581, 10, 9, 11, 14, 20, 57isumsup2 15819 . . . . 5 (𝜑𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
591, 9, 58, 42climrecl 15556 . . . 4 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ)
6059rexrd 11231 . . 3 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ*)
614feqmptd 6932 . . . . 5 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
6261fveq2d 6865 . . . 4 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
63 mpteq1 5199 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑘𝑦 ↦ (𝐹𝑘)) = (𝑘 ∈ ∅ ↦ (𝐹𝑘)))
6463fveq2d 6865 . . . . . . . . . 10 (𝑦 = ∅ → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) = (Σ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))))
65 mpt0 6663 . . . . . . . . . . . . 13 (𝑘 ∈ ∅ ↦ (𝐹𝑘)) = ∅
6665fveq2i 6864 . . . . . . . . . . . 12 ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))) = (Σ^‘∅)
67 sge00 46381 . . . . . . . . . . . 12 ^‘∅) = 0
6866, 67eqtri 2753 . . . . . . . . . . 11 ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))) = 0
6968a1i 11 . . . . . . . . . 10 (𝑦 = ∅ → (Σ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))) = 0)
7064, 69eqtrd 2765 . . . . . . . . 9 (𝑦 = ∅ → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) = 0)
7170adantl 481 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) = 0)
72 0red 11184 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
7339adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
741, 9, 14, 73seqf 13995 . . . . . . . . . . . . 13 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
7510a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐺 = seq𝑀( + , 𝐹))
7675feq1d 6673 . . . . . . . . . . . . 13 (𝜑 → (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ))
7774, 76mpbird 257 . . . . . . . . . . . 12 (𝜑𝐺:𝑍⟶ℝ)
7877frnd 6699 . . . . . . . . . . 11 (𝜑 → ran 𝐺 ⊆ ℝ)
7977ffund 6695 . . . . . . . . . . . 12 (𝜑 → Fun 𝐺)
80 uzid 12815 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
819, 80syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
821eqcomi 2739 . . . . . . . . . . . . . 14 (ℤ𝑀) = 𝑍
8381, 82eleqtrdi 2839 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
8477fdmd 6701 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐺 = 𝑍)
8584eqcomd 2736 . . . . . . . . . . . . 13 (𝜑𝑍 = dom 𝐺)
8683, 85eleqtrd 2831 . . . . . . . . . . . 12 (𝜑𝑀 ∈ dom 𝐺)
87 fvelrn 7051 . . . . . . . . . . . 12 ((Fun 𝐺𝑀 ∈ dom 𝐺) → (𝐺𝑀) ∈ ran 𝐺)
8879, 86, 87syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺𝑀) ∈ ran 𝐺)
8978, 88sseldd 3950 . . . . . . . . . 10 (𝜑 → (𝐺𝑀) ∈ ℝ)
9015a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ*)
9117a1i 11 . . . . . . . . . . . 12 (𝜑 → +∞ ∈ ℝ*)
924, 83ffvelcdmd 7060 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ (0[,)+∞))
93 icogelb 13364 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑀) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑀))
9490, 91, 92, 93syl3anc 1373 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐹𝑀))
9510fveq1i 6862 . . . . . . . . . . . . 13 (𝐺𝑀) = (seq𝑀( + , 𝐹)‘𝑀)
9695a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑀) = (seq𝑀( + , 𝐹)‘𝑀))
97 seq1 13986 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
989, 97syl 17 . . . . . . . . . . . 12 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
9996, 98eqtr2d 2766 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) = (𝐺𝑀))
10094, 99breqtrd 5136 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝐺𝑀))
10188ne0d 4308 . . . . . . . . . . 11 (𝜑 → ran 𝐺 ≠ ∅)
102 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ∈ ran 𝐺)
10377ffnd 6692 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺 Fn 𝑍)
104 fvelrnb 6924 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Fn 𝑍 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
105103, 104syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
106105adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran 𝐺) → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
107102, 106mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
108107adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
109 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑗𝜑
110 nfra1 3262 . . . . . . . . . . . . . . . . . . 19 𝑗𝑗𝑍 (𝐺𝑗) ≤ 𝑥
111109, 110nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑗(𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥)
112 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑗 𝑧 ∈ ran 𝐺
113111, 112nfan 1899 . . . . . . . . . . . . . . . . 17 𝑗((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺)
114 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑗 𝑧𝑥
115 rspa 3227 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍) → (𝐺𝑗) ≤ 𝑥)
1161153adant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) ≤ 𝑥)
117 simp3 1138 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
118 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺𝑗) = 𝑧 → (𝐺𝑗) = 𝑧)
119118eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺𝑗) = 𝑧𝑧 = (𝐺𝑗))
120119adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝑗) ≤ 𝑥 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (𝐺𝑗))
121 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝑗) ≤ 𝑥 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) ≤ 𝑥)
122120, 121eqbrtrd 5132 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝑗) ≤ 𝑥 ∧ (𝐺𝑗) = 𝑧) → 𝑧𝑥)
123116, 117, 122syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧𝑥)
1241233exp 1119 . . . . . . . . . . . . . . . . . 18 (∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧𝑥)))
125124ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧𝑥)))
126113, 114, 125rexlimd 3245 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧𝑥))
127108, 126mpd 15 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → 𝑧𝑥)
128127ralrimiva 3126 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) → ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
129128ex 412 . . . . . . . . . . . . 13 (𝜑 → (∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥 → ∀𝑧 ∈ ran 𝐺 𝑧𝑥))
130129reximdv 3149 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥))
13157, 130mpd 15 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
132 suprub 12151 . . . . . . . . . . 11 (((ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥) ∧ (𝐺𝑀) ∈ ran 𝐺) → (𝐺𝑀) ≤ sup(ran 𝐺, ℝ, < ))
13378, 101, 131, 88, 132syl31anc 1375 . . . . . . . . . 10 (𝜑 → (𝐺𝑀) ≤ sup(ran 𝐺, ℝ, < ))
13472, 89, 59, 100, 133letrd 11338 . . . . . . . . 9 (𝜑 → 0 ≤ sup(ran 𝐺, ℝ, < ))
135134ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → 0 ≤ sup(ran 𝐺, ℝ, < ))
13671, 135eqbrtrd 5132 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
137 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑦 ∈ (𝒫 𝑍 ∩ Fin))
138 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
139 elpwinss 45050 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦𝑍)
140139sselda 3949 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑍)
141140adantll 714 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑍)
1425, 13sselid 3947 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,]+∞))
143138, 141, 142syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑘) ∈ (0[,]+∞))
144 eqid 2730 . . . . . . . . . . 11 (𝑘𝑦 ↦ (𝐹𝑘)) = (𝑘𝑦 ↦ (𝐹𝑘))
145143, 144fmptd 7089 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑘𝑦 ↦ (𝐹𝑘)):𝑦⟶(0[,]+∞))
146137, 145sge0xrcl 46390 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ∈ ℝ*)
147146adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ∈ ℝ*)
148 fzfid 13945 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑀...sup(𝑦, ℝ, < )) ∈ Fin)
149 elfzuz 13488 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) → 𝑘 ∈ (ℤ𝑀))
150149, 82eleqtrdi 2839 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) → 𝑘𝑍)
151150, 142sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ (0[,]+∞))
152 eqid 2730 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘)) = (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))
153151, 152fmptd 7089 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘)):(𝑀...sup(𝑦, ℝ, < ))⟶(0[,]+∞))
154153adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘)):(𝑀...sup(𝑦, ℝ, < ))⟶(0[,]+∞))
155148, 154sge0xrcl 46390 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ℝ*)
156155adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ℝ*)
15760adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → sup(ran 𝐺, ℝ, < ) ∈ ℝ*)
158157adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(ran 𝐺, ℝ, < ) ∈ ℝ*)
159 simpll 766 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → 𝜑)
160150adantl 481 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → 𝑘𝑍)
161159, 160, 142syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ (0[,]+∞))
162 elinel2 4168 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ∈ Fin)
1631, 139, 162ssuzfz 45352 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ (𝑀...sup(𝑦, ℝ, < )))
164163adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑦 ⊆ (𝑀...sup(𝑦, ℝ, < )))
165148, 161, 164sge0lessmpt 46404 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))))
166165adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))))
16778adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ran 𝐺 ⊆ ℝ)
168167adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ran 𝐺 ⊆ ℝ)
169101adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ran 𝐺 ≠ ∅)
170169adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ran 𝐺 ≠ ∅)
171131adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
172171adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
173159, 160, 13syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ (0[,)+∞))
174148, 173sge0fsummpt 46395 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹𝑘))
175174adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹𝑘))
176 eqidd 2731 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) = (𝐹𝑘))
177139, 1sseqtrdi 3990 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ (ℤ𝑀))
178177adantr 480 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆ (ℤ𝑀))
179 uzssz 12821 . . . . . . . . . . . . . . . . . 18 (ℤ𝑀) ⊆ ℤ
1801, 179eqsstri 3996 . . . . . . . . . . . . . . . . 17 𝑍 ⊆ ℤ
181139, 180sstrdi 3962 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ ℤ)
182181adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆ ℤ)
183 neqne 2934 . . . . . . . . . . . . . . . 16 𝑦 = ∅ → 𝑦 ≠ ∅)
184183adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅)
185162adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ Fin)
186 suprfinzcl 12655 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ℤ ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin) → sup(𝑦, ℝ, < ) ∈ 𝑦)
187182, 184, 185, 186syl3anc 1373 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ 𝑦)
188178, 187sseldd 3950 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ (ℤ𝑀))
189188adantll 714 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ (ℤ𝑀))
19014recnd 11209 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
191159, 160, 190syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ ℂ)
192191adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ ℂ)
193176, 189, 192fsumser 15703 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹𝑘) = (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )))
19410eqcomi 2739 . . . . . . . . . . . . 13 seq𝑀( + , 𝐹) = 𝐺
195194fveq1i 6862 . . . . . . . . . . . 12 (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )) = (𝐺‘sup(𝑦, ℝ, < ))
196195a1i 11 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )) = (𝐺‘sup(𝑦, ℝ, < )))
197175, 193, 1963eqtrd 2769 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) = (𝐺‘sup(𝑦, ℝ, < )))
19879adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → Fun 𝐺)
199198adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → Fun 𝐺)
200189, 82eleqtrdi 2839 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ 𝑍)
20185ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → 𝑍 = dom 𝐺)
202200, 201eleqtrd 2831 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ dom 𝐺)
203 fvelrn 7051 . . . . . . . . . . 11 ((Fun 𝐺 ∧ sup(𝑦, ℝ, < ) ∈ dom 𝐺) → (𝐺‘sup(𝑦, ℝ, < )) ∈ ran 𝐺)
204199, 202, 203syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (𝐺‘sup(𝑦, ℝ, < )) ∈ ran 𝐺)
205197, 204eqeltrd 2829 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ran 𝐺)
206 suprub 12151 . . . . . . . . 9 (((ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥) ∧ (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ran 𝐺) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
207168, 170, 172, 205, 206syl31anc 1375 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
208147, 156, 158, 166, 207xrletrd 13129 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
209136, 208pm2.61dan 812 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
210209ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
211 nfv 1914 . . . . . 6 𝑘𝜑
212211, 3, 142, 60sge0lefimpt 46428 . . . . 5 (𝜑 → ((Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ) ↔ ∀𝑦 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < )))
213210, 212mpbird 257 . . . 4 (𝜑 → (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
21462, 213eqbrtrd 5132 . . 3 (𝜑 → (Σ^𝐹) ≤ sup(ran 𝐺, ℝ, < ))
21536ssriv 3953 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
216215a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑀...𝑗) ⊆ 𝑍)
2173, 142, 216sge0lessmpt 46404 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
2182173ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
219 fzfid 13945 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...𝑗) ∈ Fin)
22036, 13sylan2 593 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ (0[,)+∞))
221219, 220sge0fsummpt 46395 . . . . . . . . . . . . . 14 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
2222213ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
22334, 37, 11syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) = (𝐹𝑘))
22434, 37, 190syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
225223, 33, 224fsumser 15703 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
2262253adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
227222, 226eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = (seq𝑀( + , 𝐹)‘𝑗))
228194fveq1i 6862 . . . . . . . . . . . . 13 (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗)
229228a1i 11 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗))
230 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
231227, 229, 2303eqtrrd 2770 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))))
232623ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
233231, 232breq12d 5123 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝑧 ≤ (Σ^𝐹) ↔ (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘)))))
234218, 233mpbird 257 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 ≤ (Σ^𝐹))
2352343exp 1119 . . . . . . . 8 (𝜑 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
236235adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
237236rexlimdv 3133 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹)))
238107, 237mpd 15 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ≤ (Σ^𝐹))
239238ralrimiva 3126 . . . 4 (𝜑 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹))
2403, 7sge0cl 46386 . . . . . 6 (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))
24159ltpnfd 13088 . . . . . . . . 9 (𝜑 → sup(ran 𝐺, ℝ, < ) < +∞)
2428, 60, 91, 214, 241xrlelttrd 13127 . . . . . . . 8 (𝜑 → (Σ^𝐹) < +∞)
2438, 91, 242xrgtned 45325 . . . . . . 7 (𝜑 → +∞ ≠ (Σ^𝐹))
244243necomd 2981 . . . . . 6 (𝜑 → (Σ^𝐹) ≠ +∞)
245 ge0xrre 45536 . . . . . 6 (((Σ^𝐹) ∈ (0[,]+∞) ∧ (Σ^𝐹) ≠ +∞) → (Σ^𝐹) ∈ ℝ)
246240, 244, 245syl2anc 584 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ)
247 suprleub 12156 . . . . 5 (((ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥) ∧ (Σ^𝐹) ∈ ℝ) → (sup(ran 𝐺, ℝ, < ) ≤ (Σ^𝐹) ↔ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹)))
24878, 101, 131, 246, 247syl31anc 1375 . . . 4 (𝜑 → (sup(ran 𝐺, ℝ, < ) ≤ (Σ^𝐹) ↔ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹)))
249239, 248mpbird 257 . . 3 (𝜑 → sup(ran 𝐺, ℝ, < ) ≤ (Σ^𝐹))
2508, 60, 214, 249xrletrid 13122 . 2 (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ, < ))
251 climuni 15525 . . 3 ((𝐺𝐵𝐺 ⇝ sup(ran 𝐺, ℝ, < )) → 𝐵 = sup(ran 𝐺, ℝ, < ))
25224, 58, 251syl2anc 584 . 2 (𝜑𝐵 = sup(ran 𝐺, ℝ, < ))
253250, 252eqtr4d 2768 1 (𝜑 → (Σ^𝐹) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  supcsup 9398  cc 11073  cr 11074  0cc0 11075   + caddc 11078  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cz 12536  cuz 12800  [,)cico 13315  [,]cicc 13316  ...cfz 13475  seqcseq 13973  abscabs 15207  cli 15457  Σcsu 15659  Σ^csumge0 46367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-sumge0 46368
This theorem is referenced by:  sge0isummpt  46435
  Copyright terms: Public domain W3C validator