Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0isum Structured version   Visualization version   GIF version

Theorem sge0isum 43066
Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0isum.m (𝜑𝑀 ∈ ℤ)
sge0isum.z 𝑍 = (ℤ𝑀)
sge0isum.f (𝜑𝐹:𝑍⟶(0[,)+∞))
sge0isum.g 𝐺 = seq𝑀( + , 𝐹)
sge0isum.gcnv (𝜑𝐺𝐵)
Assertion
Ref Expression
sge0isum (𝜑 → (Σ^𝐹) = 𝐵)

Proof of Theorem sge0isum
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0isum.z . . . . . 6 𝑍 = (ℤ𝑀)
21fvexi 6659 . . . . 5 𝑍 ∈ V
32a1i 11 . . . 4 (𝜑𝑍 ∈ V)
4 sge0isum.f . . . . 5 (𝜑𝐹:𝑍⟶(0[,)+∞))
5 icossicc 12814 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
65a1i 11 . . . . 5 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
74, 6fssd 6502 . . . 4 (𝜑𝐹:𝑍⟶(0[,]+∞))
83, 7sge0xrcl 43024 . . 3 (𝜑 → (Σ^𝐹) ∈ ℝ*)
9 sge0isum.m . . . . 5 (𝜑𝑀 ∈ ℤ)
10 sge0isum.g . . . . . 6 𝐺 = seq𝑀( + , 𝐹)
11 eqidd 2799 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
12 rge0ssre 12834 . . . . . . 7 (0[,)+∞) ⊆ ℝ
134ffvelrnda 6828 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
1412, 13sseldi 3913 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
15 0xr 10677 . . . . . . . 8 0 ∈ ℝ*
1615a1i 11 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
17 pnfxr 10684 . . . . . . . 8 +∞ ∈ ℝ*
1817a1i 11 . . . . . . 7 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
19 icogelb 12776 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑘) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑘))
2016, 18, 13, 19syl3anc 1368 . . . . . 6 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
21 seqex 13366 . . . . . . . . . . 11 seq𝑀( + , 𝐹) ∈ V
2210, 21eqeltri 2886 . . . . . . . . . 10 𝐺 ∈ V
2322a1i 11 . . . . . . . . 9 (𝜑𝐺 ∈ V)
24 sge0isum.gcnv . . . . . . . . . 10 (𝜑𝐺𝐵)
25 climcl 14848 . . . . . . . . . 10 (𝐺𝐵𝐵 ∈ ℂ)
2624, 25syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
27 breldmg 5742 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐵 ∈ ℂ ∧ 𝐺𝐵) → 𝐺 ∈ dom ⇝ )
2823, 26, 24, 27syl3anc 1368 . . . . . . . 8 (𝜑𝐺 ∈ dom ⇝ )
2910a1i 11 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝐺 = seq𝑀( + , 𝐹))
3029fveq1d 6647 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐺𝑗) = (seq𝑀( + , 𝐹)‘𝑗))
311eleq2i 2881 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
3231biimpi 219 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
3332adantl 485 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
34 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
35 elfzuz 12898 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3635, 1eleqtrrdi 2901 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3736adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
3834, 37, 14syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
39 readdcl 10609 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑘 + 𝑖) ∈ ℝ)
4039adantl 485 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
4133, 38, 40seqcl 13386 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
4230, 41eqeltrd 2890 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℝ)
4342recnd 10658 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
4443ralrimiva 3149 . . . . . . . 8 (𝜑 → ∀𝑗𝑍 (𝐺𝑗) ∈ ℂ)
451climbdd 15020 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐺 ∈ dom ⇝ ∧ ∀𝑗𝑍 (𝐺𝑗) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥)
469, 28, 44, 45syl3anc 1368 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥)
4742ad4ant13 750 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ∈ ℝ)
4843ad4ant13 750 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ∈ ℂ)
4948abscld 14788 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (abs‘(𝐺𝑗)) ∈ ℝ)
50 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → 𝑥 ∈ ℝ)
5147leabsd 14766 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ≤ (abs‘(𝐺𝑗)))
52 simpr 488 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (abs‘(𝐺𝑗)) ≤ 𝑥)
5347, 49, 50, 51, 52letrd 10786 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ≤ 𝑥)
5453ex 416 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → ((abs‘(𝐺𝑗)) ≤ 𝑥 → (𝐺𝑗) ≤ 𝑥))
5554ralimdva 3144 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥 → ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥))
5655reximdva 3233 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥))
5746, 56mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥)
581, 10, 9, 11, 14, 20, 57isumsup2 15193 . . . . 5 (𝜑𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
591, 9, 58, 42climrecl 14932 . . . 4 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ)
6059rexrd 10680 . . 3 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ*)
614feqmptd 6708 . . . . 5 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
6261fveq2d 6649 . . . 4 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
63 mpteq1 5118 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑘𝑦 ↦ (𝐹𝑘)) = (𝑘 ∈ ∅ ↦ (𝐹𝑘)))
6463fveq2d 6649 . . . . . . . . . 10 (𝑦 = ∅ → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) = (Σ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))))
65 mpt0 6462 . . . . . . . . . . . . 13 (𝑘 ∈ ∅ ↦ (𝐹𝑘)) = ∅
6665fveq2i 6648 . . . . . . . . . . . 12 ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))) = (Σ^‘∅)
67 sge00 43015 . . . . . . . . . . . 12 ^‘∅) = 0
6866, 67eqtri 2821 . . . . . . . . . . 11 ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))) = 0
6968a1i 11 . . . . . . . . . 10 (𝑦 = ∅ → (Σ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))) = 0)
7064, 69eqtrd 2833 . . . . . . . . 9 (𝑦 = ∅ → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) = 0)
7170adantl 485 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) = 0)
72 0red 10633 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
7339adantl 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
741, 9, 14, 73seqf 13387 . . . . . . . . . . . . 13 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
7510a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐺 = seq𝑀( + , 𝐹))
7675feq1d 6472 . . . . . . . . . . . . 13 (𝜑 → (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ))
7774, 76mpbird 260 . . . . . . . . . . . 12 (𝜑𝐺:𝑍⟶ℝ)
7877frnd 6494 . . . . . . . . . . 11 (𝜑 → ran 𝐺 ⊆ ℝ)
7977ffund 6491 . . . . . . . . . . . 12 (𝜑 → Fun 𝐺)
80 uzid 12246 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
819, 80syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
821eqcomi 2807 . . . . . . . . . . . . . 14 (ℤ𝑀) = 𝑍
8381, 82eleqtrdi 2900 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
8477fdmd 6497 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐺 = 𝑍)
8584eqcomd 2804 . . . . . . . . . . . . 13 (𝜑𝑍 = dom 𝐺)
8683, 85eleqtrd 2892 . . . . . . . . . . . 12 (𝜑𝑀 ∈ dom 𝐺)
87 fvelrn 6821 . . . . . . . . . . . 12 ((Fun 𝐺𝑀 ∈ dom 𝐺) → (𝐺𝑀) ∈ ran 𝐺)
8879, 86, 87syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝐺𝑀) ∈ ran 𝐺)
8978, 88sseldd 3916 . . . . . . . . . 10 (𝜑 → (𝐺𝑀) ∈ ℝ)
9015a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ*)
9117a1i 11 . . . . . . . . . . . 12 (𝜑 → +∞ ∈ ℝ*)
924, 83ffvelrnd 6829 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ (0[,)+∞))
93 icogelb 12776 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑀) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑀))
9490, 91, 92, 93syl3anc 1368 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐹𝑀))
9510fveq1i 6646 . . . . . . . . . . . . 13 (𝐺𝑀) = (seq𝑀( + , 𝐹)‘𝑀)
9695a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑀) = (seq𝑀( + , 𝐹)‘𝑀))
97 seq1 13377 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
989, 97syl 17 . . . . . . . . . . . 12 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
9996, 98eqtr2d 2834 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) = (𝐺𝑀))
10094, 99breqtrd 5056 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝐺𝑀))
10188ne0d 4251 . . . . . . . . . . 11 (𝜑 → ran 𝐺 ≠ ∅)
102 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ∈ ran 𝐺)
10377ffnd 6488 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺 Fn 𝑍)
104 fvelrnb 6701 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Fn 𝑍 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
105103, 104syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
106105adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran 𝐺) → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
107102, 106mpbid 235 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
108107adantlr 714 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
109 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑗𝜑
110 nfra1 3183 . . . . . . . . . . . . . . . . . . 19 𝑗𝑗𝑍 (𝐺𝑗) ≤ 𝑥
111109, 110nfan 1900 . . . . . . . . . . . . . . . . . 18 𝑗(𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥)
112 nfv 1915 . . . . . . . . . . . . . . . . . 18 𝑗 𝑧 ∈ ran 𝐺
113111, 112nfan 1900 . . . . . . . . . . . . . . . . 17 𝑗((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺)
114 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑗 𝑧𝑥
115 rspa 3171 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍) → (𝐺𝑗) ≤ 𝑥)
1161153adant3 1129 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) ≤ 𝑥)
117 simp3 1135 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
118 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺𝑗) = 𝑧 → (𝐺𝑗) = 𝑧)
119118eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺𝑗) = 𝑧𝑧 = (𝐺𝑗))
120119adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝑗) ≤ 𝑥 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (𝐺𝑗))
121 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝑗) ≤ 𝑥 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) ≤ 𝑥)
122120, 121eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝑗) ≤ 𝑥 ∧ (𝐺𝑗) = 𝑧) → 𝑧𝑥)
123116, 117, 122syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧𝑥)
1241233exp 1116 . . . . . . . . . . . . . . . . . 18 (∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧𝑥)))
125124ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧𝑥)))
126113, 114, 125rexlimd 3276 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧𝑥))
127108, 126mpd 15 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → 𝑧𝑥)
128127ralrimiva 3149 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) → ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
129128ex 416 . . . . . . . . . . . . 13 (𝜑 → (∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥 → ∀𝑧 ∈ ran 𝐺 𝑧𝑥))
130129reximdv 3232 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥))
13157, 130mpd 15 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
132 suprub 11589 . . . . . . . . . . 11 (((ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥) ∧ (𝐺𝑀) ∈ ran 𝐺) → (𝐺𝑀) ≤ sup(ran 𝐺, ℝ, < ))
13378, 101, 131, 88, 132syl31anc 1370 . . . . . . . . . 10 (𝜑 → (𝐺𝑀) ≤ sup(ran 𝐺, ℝ, < ))
13472, 89, 59, 100, 133letrd 10786 . . . . . . . . 9 (𝜑 → 0 ≤ sup(ran 𝐺, ℝ, < ))
135134ad2antrr 725 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → 0 ≤ sup(ran 𝐺, ℝ, < ))
13671, 135eqbrtrd 5052 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
137 simpr 488 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑦 ∈ (𝒫 𝑍 ∩ Fin))
138 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
139 elpwinss 41683 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦𝑍)
140139sselda 3915 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑍)
141140adantll 713 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑍)
1425, 13sseldi 3913 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,]+∞))
143138, 141, 142syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑘) ∈ (0[,]+∞))
144 eqid 2798 . . . . . . . . . . 11 (𝑘𝑦 ↦ (𝐹𝑘)) = (𝑘𝑦 ↦ (𝐹𝑘))
145143, 144fmptd 6855 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑘𝑦 ↦ (𝐹𝑘)):𝑦⟶(0[,]+∞))
146137, 145sge0xrcl 43024 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ∈ ℝ*)
147146adantr 484 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ∈ ℝ*)
148 fzfid 13336 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑀...sup(𝑦, ℝ, < )) ∈ Fin)
149 elfzuz 12898 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) → 𝑘 ∈ (ℤ𝑀))
150149, 82eleqtrdi 2900 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) → 𝑘𝑍)
151150, 142sylan2 595 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ (0[,]+∞))
152 eqid 2798 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘)) = (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))
153151, 152fmptd 6855 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘)):(𝑀...sup(𝑦, ℝ, < ))⟶(0[,]+∞))
154153adantr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘)):(𝑀...sup(𝑦, ℝ, < ))⟶(0[,]+∞))
155148, 154sge0xrcl 43024 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ℝ*)
156155adantr 484 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ℝ*)
15760adantr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → sup(ran 𝐺, ℝ, < ) ∈ ℝ*)
158157adantr 484 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(ran 𝐺, ℝ, < ) ∈ ℝ*)
159 simpll 766 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → 𝜑)
160150adantl 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → 𝑘𝑍)
161159, 160, 142syl2anc 587 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ (0[,]+∞))
162 elinel2 4123 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ∈ Fin)
1631, 139, 162ssuzfz 41981 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ (𝑀...sup(𝑦, ℝ, < )))
164163adantl 485 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑦 ⊆ (𝑀...sup(𝑦, ℝ, < )))
165148, 161, 164sge0lessmpt 43038 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))))
166165adantr 484 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))))
16778adantr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ran 𝐺 ⊆ ℝ)
168167adantr 484 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ran 𝐺 ⊆ ℝ)
169101adantr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ran 𝐺 ≠ ∅)
170169adantr 484 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ran 𝐺 ≠ ∅)
171131adantr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
172171adantr 484 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
173159, 160, 13syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ (0[,)+∞))
174148, 173sge0fsummpt 43029 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹𝑘))
175174adantr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹𝑘))
176 eqidd 2799 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) = (𝐹𝑘))
177139, 1sseqtrdi 3965 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ (ℤ𝑀))
178177adantr 484 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆ (ℤ𝑀))
179 uzssz 12252 . . . . . . . . . . . . . . . . . 18 (ℤ𝑀) ⊆ ℤ
1801, 179eqsstri 3949 . . . . . . . . . . . . . . . . 17 𝑍 ⊆ ℤ
181139, 180sstrdi 3927 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ ℤ)
182181adantr 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆ ℤ)
183 neqne 2995 . . . . . . . . . . . . . . . 16 𝑦 = ∅ → 𝑦 ≠ ∅)
184183adantl 485 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅)
185162adantr 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ Fin)
186 suprfinzcl 12085 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ℤ ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin) → sup(𝑦, ℝ, < ) ∈ 𝑦)
187182, 184, 185, 186syl3anc 1368 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ 𝑦)
188178, 187sseldd 3916 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ (ℤ𝑀))
189188adantll 713 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ (ℤ𝑀))
19014recnd 10658 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
191159, 160, 190syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ ℂ)
192191adantlr 714 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ ℂ)
193176, 189, 192fsumser 15079 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹𝑘) = (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )))
19410eqcomi 2807 . . . . . . . . . . . . 13 seq𝑀( + , 𝐹) = 𝐺
195194fveq1i 6646 . . . . . . . . . . . 12 (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )) = (𝐺‘sup(𝑦, ℝ, < ))
196195a1i 11 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )) = (𝐺‘sup(𝑦, ℝ, < )))
197175, 193, 1963eqtrd 2837 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) = (𝐺‘sup(𝑦, ℝ, < )))
19879adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → Fun 𝐺)
199198adantr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → Fun 𝐺)
200189, 82eleqtrdi 2900 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ 𝑍)
20185ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → 𝑍 = dom 𝐺)
202200, 201eleqtrd 2892 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ dom 𝐺)
203 fvelrn 6821 . . . . . . . . . . 11 ((Fun 𝐺 ∧ sup(𝑦, ℝ, < ) ∈ dom 𝐺) → (𝐺‘sup(𝑦, ℝ, < )) ∈ ran 𝐺)
204199, 202, 203syl2anc 587 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (𝐺‘sup(𝑦, ℝ, < )) ∈ ran 𝐺)
205197, 204eqeltrd 2890 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ran 𝐺)
206 suprub 11589 . . . . . . . . 9 (((ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥) ∧ (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ran 𝐺) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
207168, 170, 172, 205, 206syl31anc 1370 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
208147, 156, 158, 166, 207xrletrd 12543 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
209136, 208pm2.61dan 812 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
210209ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
211 nfv 1915 . . . . . 6 𝑘𝜑
212211, 3, 142, 60sge0lefimpt 43062 . . . . 5 (𝜑 → ((Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ) ↔ ∀𝑦 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < )))
213210, 212mpbird 260 . . . 4 (𝜑 → (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
21462, 213eqbrtrd 5052 . . 3 (𝜑 → (Σ^𝐹) ≤ sup(ran 𝐺, ℝ, < ))
21536ssriv 3919 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
216215a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑀...𝑗) ⊆ 𝑍)
2173, 142, 216sge0lessmpt 43038 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
2182173ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
219 fzfid 13336 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...𝑗) ∈ Fin)
22036, 13sylan2 595 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ (0[,)+∞))
221219, 220sge0fsummpt 43029 . . . . . . . . . . . . . 14 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
2222213ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
22334, 37, 11syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) = (𝐹𝑘))
22434, 37, 190syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
225223, 33, 224fsumser 15079 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
2262253adant3 1129 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
227222, 226eqtrd 2833 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = (seq𝑀( + , 𝐹)‘𝑗))
228194fveq1i 6646 . . . . . . . . . . . . 13 (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗)
229228a1i 11 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗))
230 simp3 1135 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
231227, 229, 2303eqtrrd 2838 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))))
232623ad2ant1 1130 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
233231, 232breq12d 5043 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝑧 ≤ (Σ^𝐹) ↔ (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘)))))
234218, 233mpbird 260 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 ≤ (Σ^𝐹))
2352343exp 1116 . . . . . . . 8 (𝜑 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
236235adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
237236rexlimdv 3242 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹)))
238107, 237mpd 15 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ≤ (Σ^𝐹))
239238ralrimiva 3149 . . . 4 (𝜑 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹))
2403, 7sge0cl 43020 . . . . . 6 (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))
24159ltpnfd 12504 . . . . . . . . 9 (𝜑 → sup(ran 𝐺, ℝ, < ) < +∞)
2428, 60, 91, 214, 241xrlelttrd 12541 . . . . . . . 8 (𝜑 → (Σ^𝐹) < +∞)
2438, 91, 242xrgtned 41954 . . . . . . 7 (𝜑 → +∞ ≠ (Σ^𝐹))
244243necomd 3042 . . . . . 6 (𝜑 → (Σ^𝐹) ≠ +∞)
245 ge0xrre 42168 . . . . . 6 (((Σ^𝐹) ∈ (0[,]+∞) ∧ (Σ^𝐹) ≠ +∞) → (Σ^𝐹) ∈ ℝ)
246240, 244, 245syl2anc 587 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ)
247 suprleub 11594 . . . . 5 (((ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥) ∧ (Σ^𝐹) ∈ ℝ) → (sup(ran 𝐺, ℝ, < ) ≤ (Σ^𝐹) ↔ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹)))
24878, 101, 131, 246, 247syl31anc 1370 . . . 4 (𝜑 → (sup(ran 𝐺, ℝ, < ) ≤ (Σ^𝐹) ↔ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹)))
249239, 248mpbird 260 . . 3 (𝜑 → sup(ran 𝐺, ℝ, < ) ≤ (Σ^𝐹))
2508, 60, 214, 249xrletrid 12536 . 2 (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ, < ))
251 climuni 14901 . . 3 ((𝐺𝐵𝐺 ⇝ sup(ran 𝐺, ℝ, < )) → 𝐵 = sup(ran 𝐺, ℝ, < ))
25224, 58, 251syl2anc 587 . 2 (𝜑𝐵 = sup(ran 𝐺, ℝ, < ))
253250, 252eqtr4d 2836 1 (𝜑 → (Σ^𝐹) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  supcsup 8888  cc 10524  cr 10525  0cc0 10526   + caddc 10529  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cz 11969  cuz 12231  [,)cico 12728  [,]cicc 12729  ...cfz 12885  seqcseq 13364  abscabs 14585  cli 14833  Σcsu 15034  Σ^csumge0 43001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-sumge0 43002
This theorem is referenced by:  sge0isummpt  43069
  Copyright terms: Public domain W3C validator