Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0isum Structured version   Visualization version   GIF version

Theorem sge0isum 46465
Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0isum.m (𝜑𝑀 ∈ ℤ)
sge0isum.z 𝑍 = (ℤ𝑀)
sge0isum.f (𝜑𝐹:𝑍⟶(0[,)+∞))
sge0isum.g 𝐺 = seq𝑀( + , 𝐹)
sge0isum.gcnv (𝜑𝐺𝐵)
Assertion
Ref Expression
sge0isum (𝜑 → (Σ^𝐹) = 𝐵)

Proof of Theorem sge0isum
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0isum.z . . . . . 6 𝑍 = (ℤ𝑀)
21fvexi 6831 . . . . 5 𝑍 ∈ V
32a1i 11 . . . 4 (𝜑𝑍 ∈ V)
4 sge0isum.f . . . . 5 (𝜑𝐹:𝑍⟶(0[,)+∞))
5 icossicc 13331 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
65a1i 11 . . . . 5 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
74, 6fssd 6663 . . . 4 (𝜑𝐹:𝑍⟶(0[,]+∞))
83, 7sge0xrcl 46423 . . 3 (𝜑 → (Σ^𝐹) ∈ ℝ*)
9 sge0isum.m . . . . 5 (𝜑𝑀 ∈ ℤ)
10 sge0isum.g . . . . . 6 𝐺 = seq𝑀( + , 𝐹)
11 eqidd 2732 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
12 rge0ssre 13351 . . . . . . 7 (0[,)+∞) ⊆ ℝ
134ffvelcdmda 7012 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
1412, 13sselid 3927 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
15 0xr 11154 . . . . . . . 8 0 ∈ ℝ*
1615a1i 11 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
17 pnfxr 11161 . . . . . . . 8 +∞ ∈ ℝ*
1817a1i 11 . . . . . . 7 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
19 icogelb 13291 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑘) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑘))
2016, 18, 13, 19syl3anc 1373 . . . . . 6 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
21 seqex 13905 . . . . . . . . . . 11 seq𝑀( + , 𝐹) ∈ V
2210, 21eqeltri 2827 . . . . . . . . . 10 𝐺 ∈ V
2322a1i 11 . . . . . . . . 9 (𝜑𝐺 ∈ V)
24 sge0isum.gcnv . . . . . . . . . 10 (𝜑𝐺𝐵)
25 climcl 15401 . . . . . . . . . 10 (𝐺𝐵𝐵 ∈ ℂ)
2624, 25syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
27 breldmg 5844 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐵 ∈ ℂ ∧ 𝐺𝐵) → 𝐺 ∈ dom ⇝ )
2823, 26, 24, 27syl3anc 1373 . . . . . . . 8 (𝜑𝐺 ∈ dom ⇝ )
2910a1i 11 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝐺 = seq𝑀( + , 𝐹))
3029fveq1d 6819 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐺𝑗) = (seq𝑀( + , 𝐹)‘𝑗))
311eleq2i 2823 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
3231biimpi 216 . . . . . . . . . . . . 13 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
3332adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
34 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
35 elfzuz 13415 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3635, 1eleqtrrdi 2842 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3736adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
3834, 37, 14syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
39 readdcl 11084 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑘 + 𝑖) ∈ ℝ)
4039adantl 481 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
4133, 38, 40seqcl 13924 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
4230, 41eqeltrd 2831 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℝ)
4342recnd 11135 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
4443ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑗𝑍 (𝐺𝑗) ∈ ℂ)
451climbdd 15574 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐺 ∈ dom ⇝ ∧ ∀𝑗𝑍 (𝐺𝑗) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥)
469, 28, 44, 45syl3anc 1373 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥)
4742ad4ant13 751 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ∈ ℝ)
4843ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ∈ ℂ)
4948abscld 15341 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (abs‘(𝐺𝑗)) ∈ ℝ)
50 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → 𝑥 ∈ ℝ)
5147leabsd 15317 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ≤ (abs‘(𝐺𝑗)))
52 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (abs‘(𝐺𝑗)) ≤ 𝑥)
5347, 49, 50, 51, 52letrd 11265 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ (abs‘(𝐺𝑗)) ≤ 𝑥) → (𝐺𝑗) ≤ 𝑥)
5453ex 412 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → ((abs‘(𝐺𝑗)) ≤ 𝑥 → (𝐺𝑗) ≤ 𝑥))
5554ralimdva 3144 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥 → ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥))
5655reximdva 3145 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍 (abs‘(𝐺𝑗)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥))
5746, 56mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥)
581, 10, 9, 11, 14, 20, 57isumsup2 15748 . . . . 5 (𝜑𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
591, 9, 58, 42climrecl 15485 . . . 4 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ)
6059rexrd 11157 . . 3 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ*)
614feqmptd 6885 . . . . 5 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
6261fveq2d 6821 . . . 4 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
63 mpteq1 5175 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑘𝑦 ↦ (𝐹𝑘)) = (𝑘 ∈ ∅ ↦ (𝐹𝑘)))
6463fveq2d 6821 . . . . . . . . . 10 (𝑦 = ∅ → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) = (Σ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))))
65 mpt0 6618 . . . . . . . . . . . . 13 (𝑘 ∈ ∅ ↦ (𝐹𝑘)) = ∅
6665fveq2i 6820 . . . . . . . . . . . 12 ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))) = (Σ^‘∅)
67 sge00 46414 . . . . . . . . . . . 12 ^‘∅) = 0
6866, 67eqtri 2754 . . . . . . . . . . 11 ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))) = 0
6968a1i 11 . . . . . . . . . 10 (𝑦 = ∅ → (Σ^‘(𝑘 ∈ ∅ ↦ (𝐹𝑘))) = 0)
7064, 69eqtrd 2766 . . . . . . . . 9 (𝑦 = ∅ → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) = 0)
7170adantl 481 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) = 0)
72 0red 11110 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
7339adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
741, 9, 14, 73seqf 13925 . . . . . . . . . . . . 13 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
7510a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐺 = seq𝑀( + , 𝐹))
7675feq1d 6628 . . . . . . . . . . . . 13 (𝜑 → (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ))
7774, 76mpbird 257 . . . . . . . . . . . 12 (𝜑𝐺:𝑍⟶ℝ)
7877frnd 6654 . . . . . . . . . . 11 (𝜑 → ran 𝐺 ⊆ ℝ)
7977ffund 6650 . . . . . . . . . . . 12 (𝜑 → Fun 𝐺)
80 uzid 12742 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
819, 80syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
821eqcomi 2740 . . . . . . . . . . . . . 14 (ℤ𝑀) = 𝑍
8381, 82eleqtrdi 2841 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
8477fdmd 6656 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐺 = 𝑍)
8584eqcomd 2737 . . . . . . . . . . . . 13 (𝜑𝑍 = dom 𝐺)
8683, 85eleqtrd 2833 . . . . . . . . . . . 12 (𝜑𝑀 ∈ dom 𝐺)
87 fvelrn 7004 . . . . . . . . . . . 12 ((Fun 𝐺𝑀 ∈ dom 𝐺) → (𝐺𝑀) ∈ ran 𝐺)
8879, 86, 87syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺𝑀) ∈ ran 𝐺)
8978, 88sseldd 3930 . . . . . . . . . 10 (𝜑 → (𝐺𝑀) ∈ ℝ)
9015a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ*)
9117a1i 11 . . . . . . . . . . . 12 (𝜑 → +∞ ∈ ℝ*)
924, 83ffvelcdmd 7013 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ (0[,)+∞))
93 icogelb 13291 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑀) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑀))
9490, 91, 92, 93syl3anc 1373 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐹𝑀))
9510fveq1i 6818 . . . . . . . . . . . . 13 (𝐺𝑀) = (seq𝑀( + , 𝐹)‘𝑀)
9695a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐺𝑀) = (seq𝑀( + , 𝐹)‘𝑀))
97 seq1 13916 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
989, 97syl 17 . . . . . . . . . . . 12 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
9996, 98eqtr2d 2767 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) = (𝐺𝑀))
10094, 99breqtrd 5112 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝐺𝑀))
10188ne0d 4287 . . . . . . . . . . 11 (𝜑 → ran 𝐺 ≠ ∅)
102 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ∈ ran 𝐺)
10377ffnd 6647 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺 Fn 𝑍)
104 fvelrnb 6877 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Fn 𝑍 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
105103, 104syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
106105adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran 𝐺) → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
107102, 106mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
108107adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
109 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑗𝜑
110 nfra1 3256 . . . . . . . . . . . . . . . . . . 19 𝑗𝑗𝑍 (𝐺𝑗) ≤ 𝑥
111109, 110nfan 1900 . . . . . . . . . . . . . . . . . 18 𝑗(𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥)
112 nfv 1915 . . . . . . . . . . . . . . . . . 18 𝑗 𝑧 ∈ ran 𝐺
113111, 112nfan 1900 . . . . . . . . . . . . . . . . 17 𝑗((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺)
114 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑗 𝑧𝑥
115 rspa 3221 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍) → (𝐺𝑗) ≤ 𝑥)
1161153adant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) ≤ 𝑥)
117 simp3 1138 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
118 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺𝑗) = 𝑧 → (𝐺𝑗) = 𝑧)
119118eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺𝑗) = 𝑧𝑧 = (𝐺𝑗))
120119adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝑗) ≤ 𝑥 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (𝐺𝑗))
121 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺𝑗) ≤ 𝑥 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) ≤ 𝑥)
122120, 121eqbrtrd 5108 . . . . . . . . . . . . . . . . . . . 20 (((𝐺𝑗) ≤ 𝑥 ∧ (𝐺𝑗) = 𝑧) → 𝑧𝑥)
123116, 117, 122syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧𝑥)
1241233exp 1119 . . . . . . . . . . . . . . . . . 18 (∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧𝑥)))
125124ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧𝑥)))
126113, 114, 125rexlimd 3239 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧𝑥))
127108, 126mpd 15 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) ∧ 𝑧 ∈ ran 𝐺) → 𝑧𝑥)
128127ralrimiva 3124 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥) → ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
129128ex 412 . . . . . . . . . . . . 13 (𝜑 → (∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥 → ∀𝑧 ∈ ran 𝐺 𝑧𝑥))
130129reximdv 3147 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥))
13157, 130mpd 15 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
132 suprub 12078 . . . . . . . . . . 11 (((ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥) ∧ (𝐺𝑀) ∈ ran 𝐺) → (𝐺𝑀) ≤ sup(ran 𝐺, ℝ, < ))
13378, 101, 131, 88, 132syl31anc 1375 . . . . . . . . . 10 (𝜑 → (𝐺𝑀) ≤ sup(ran 𝐺, ℝ, < ))
13472, 89, 59, 100, 133letrd 11265 . . . . . . . . 9 (𝜑 → 0 ≤ sup(ran 𝐺, ℝ, < ))
135134ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → 0 ≤ sup(ran 𝐺, ℝ, < ))
13671, 135eqbrtrd 5108 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
137 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑦 ∈ (𝒫 𝑍 ∩ Fin))
138 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
139 elpwinss 45086 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦𝑍)
140139sselda 3929 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑍)
141140adantll 714 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑍)
1425, 13sselid 3927 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,]+∞))
143138, 141, 142syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑘) ∈ (0[,]+∞))
144 eqid 2731 . . . . . . . . . . 11 (𝑘𝑦 ↦ (𝐹𝑘)) = (𝑘𝑦 ↦ (𝐹𝑘))
145143, 144fmptd 7042 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑘𝑦 ↦ (𝐹𝑘)):𝑦⟶(0[,]+∞))
146137, 145sge0xrcl 46423 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ∈ ℝ*)
147146adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ∈ ℝ*)
148 fzfid 13875 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑀...sup(𝑦, ℝ, < )) ∈ Fin)
149 elfzuz 13415 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) → 𝑘 ∈ (ℤ𝑀))
150149, 82eleqtrdi 2841 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) → 𝑘𝑍)
151150, 142sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ (0[,]+∞))
152 eqid 2731 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘)) = (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))
153151, 152fmptd 7042 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘)):(𝑀...sup(𝑦, ℝ, < ))⟶(0[,]+∞))
154153adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘)):(𝑀...sup(𝑦, ℝ, < ))⟶(0[,]+∞))
155148, 154sge0xrcl 46423 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ℝ*)
156155adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ℝ*)
15760adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → sup(ran 𝐺, ℝ, < ) ∈ ℝ*)
158157adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(ran 𝐺, ℝ, < ) ∈ ℝ*)
159 simpll 766 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → 𝜑)
160150adantl 481 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → 𝑘𝑍)
161159, 160, 142syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ (0[,]+∞))
162 elinel2 4147 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ∈ Fin)
1631, 139, 162ssuzfz 45388 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ (𝑀...sup(𝑦, ℝ, < )))
164163adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑦 ⊆ (𝑀...sup(𝑦, ℝ, < )))
165148, 161, 164sge0lessmpt 46437 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))))
166165adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))))
16778adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ran 𝐺 ⊆ ℝ)
168167adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ran 𝐺 ⊆ ℝ)
169101adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ran 𝐺 ≠ ∅)
170169adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ran 𝐺 ≠ ∅)
171131adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
172171adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥)
173159, 160, 13syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ (0[,)+∞))
174148, 173sge0fsummpt 46428 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹𝑘))
175174adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹𝑘))
176 eqidd 2732 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) = (𝐹𝑘))
177139, 1sseqtrdi 3970 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ (ℤ𝑀))
178177adantr 480 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆ (ℤ𝑀))
179 uzssz 12748 . . . . . . . . . . . . . . . . . 18 (ℤ𝑀) ⊆ ℤ
1801, 179eqsstri 3976 . . . . . . . . . . . . . . . . 17 𝑍 ⊆ ℤ
181139, 180sstrdi 3942 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝑍 ∩ Fin) → 𝑦 ⊆ ℤ)
182181adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆ ℤ)
183 neqne 2936 . . . . . . . . . . . . . . . 16 𝑦 = ∅ → 𝑦 ≠ ∅)
184183adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅)
185162adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ Fin)
186 suprfinzcl 12582 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ℤ ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin) → sup(𝑦, ℝ, < ) ∈ 𝑦)
187182, 184, 185, 186syl3anc 1373 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ 𝑦)
188178, 187sseldd 3930 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝑍 ∩ Fin) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ (ℤ𝑀))
189188adantll 714 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ (ℤ𝑀))
19014recnd 11135 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
191159, 160, 190syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ ℂ)
192191adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) ∧ 𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))) → (𝐹𝑘) ∈ ℂ)
193176, 189, 192fsumser 15632 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → Σ𝑘 ∈ (𝑀...sup(𝑦, ℝ, < ))(𝐹𝑘) = (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )))
19410eqcomi 2740 . . . . . . . . . . . . 13 seq𝑀( + , 𝐹) = 𝐺
195194fveq1i 6818 . . . . . . . . . . . 12 (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )) = (𝐺‘sup(𝑦, ℝ, < ))
196195a1i 11 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (seq𝑀( + , 𝐹)‘sup(𝑦, ℝ, < )) = (𝐺‘sup(𝑦, ℝ, < )))
197175, 193, 1963eqtrd 2770 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) = (𝐺‘sup(𝑦, ℝ, < )))
19879adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → Fun 𝐺)
199198adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → Fun 𝐺)
200189, 82eleqtrdi 2841 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ 𝑍)
20185ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → 𝑍 = dom 𝐺)
202200, 201eleqtrd 2833 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → sup(𝑦, ℝ, < ) ∈ dom 𝐺)
203 fvelrn 7004 . . . . . . . . . . 11 ((Fun 𝐺 ∧ sup(𝑦, ℝ, < ) ∈ dom 𝐺) → (𝐺‘sup(𝑦, ℝ, < )) ∈ ran 𝐺)
204199, 202, 203syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (𝐺‘sup(𝑦, ℝ, < )) ∈ ran 𝐺)
205197, 204eqeltrd 2831 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ran 𝐺)
206 suprub 12078 . . . . . . . . 9 (((ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥) ∧ (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ∈ ran 𝐺) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
207168, 170, 172, 205, 206syl31anc 1375 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘 ∈ (𝑀...sup(𝑦, ℝ, < )) ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
208147, 156, 158, 166, 207xrletrd 13056 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) ∧ ¬ 𝑦 = ∅) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
209136, 208pm2.61dan 812 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
210209ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
211 nfv 1915 . . . . . 6 𝑘𝜑
212211, 3, 142, 60sge0lefimpt 46461 . . . . 5 (𝜑 → ((Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ) ↔ ∀𝑦 ∈ (𝒫 𝑍 ∩ Fin)(Σ^‘(𝑘𝑦 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < )))
213210, 212mpbird 257 . . . 4 (𝜑 → (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))) ≤ sup(ran 𝐺, ℝ, < ))
21462, 213eqbrtrd 5108 . . 3 (𝜑 → (Σ^𝐹) ≤ sup(ran 𝐺, ℝ, < ))
21536ssriv 3933 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
216215a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑀...𝑗) ⊆ 𝑍)
2173, 142, 216sge0lessmpt 46437 . . . . . . . . . . 11 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
2182173ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
219 fzfid 13875 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...𝑗) ∈ Fin)
22036, 13sylan2 593 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ (0[,)+∞))
221219, 220sge0fsummpt 46428 . . . . . . . . . . . . . 14 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
2222213ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
22334, 37, 11syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) = (𝐹𝑘))
22434, 37, 190syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
225223, 33, 224fsumser 15632 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
2262253adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
227222, 226eqtrd 2766 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = (seq𝑀( + , 𝐹)‘𝑗))
228194fveq1i 6818 . . . . . . . . . . . . 13 (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗)
229228a1i 11 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗))
230 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
231227, 229, 2303eqtrrd 2771 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))))
232623ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
233231, 232breq12d 5099 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝑧 ≤ (Σ^𝐹) ↔ (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘)))))
234218, 233mpbird 257 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 ≤ (Σ^𝐹))
2352343exp 1119 . . . . . . . 8 (𝜑 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
236235adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
237236rexlimdv 3131 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹)))
238107, 237mpd 15 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ≤ (Σ^𝐹))
239238ralrimiva 3124 . . . 4 (𝜑 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹))
2403, 7sge0cl 46419 . . . . . 6 (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))
24159ltpnfd 13015 . . . . . . . . 9 (𝜑 → sup(ran 𝐺, ℝ, < ) < +∞)
2428, 60, 91, 214, 241xrlelttrd 13054 . . . . . . . 8 (𝜑 → (Σ^𝐹) < +∞)
2438, 91, 242xrgtned 45361 . . . . . . 7 (𝜑 → +∞ ≠ (Σ^𝐹))
244243necomd 2983 . . . . . 6 (𝜑 → (Σ^𝐹) ≠ +∞)
245 ge0xrre 45571 . . . . . 6 (((Σ^𝐹) ∈ (0[,]+∞) ∧ (Σ^𝐹) ≠ +∞) → (Σ^𝐹) ∈ ℝ)
246240, 244, 245syl2anc 584 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ)
247 suprleub 12083 . . . . 5 (((ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐺 𝑧𝑥) ∧ (Σ^𝐹) ∈ ℝ) → (sup(ran 𝐺, ℝ, < ) ≤ (Σ^𝐹) ↔ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹)))
24878, 101, 131, 246, 247syl31anc 1375 . . . 4 (𝜑 → (sup(ran 𝐺, ℝ, < ) ≤ (Σ^𝐹) ↔ ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹)))
249239, 248mpbird 257 . . 3 (𝜑 → sup(ran 𝐺, ℝ, < ) ≤ (Σ^𝐹))
2508, 60, 214, 249xrletrid 13049 . 2 (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ, < ))
251 climuni 15454 . . 3 ((𝐺𝐵𝐺 ⇝ sup(ran 𝐺, ℝ, < )) → 𝐵 = sup(ran 𝐺, ℝ, < ))
25224, 58, 251syl2anc 584 . 2 (𝜑𝐵 = sup(ran 𝐺, ℝ, < ))
253250, 252eqtr4d 2769 1 (𝜑 → (Σ^𝐹) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  c0 4278  𝒫 cpw 4545   class class class wbr 5086  cmpt 5167  dom cdm 5611  ran crn 5612  Fun wfun 6470   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  Fincfn 8864  supcsup 9319  cc 10999  cr 11000  0cc0 11001   + caddc 11004  +∞cpnf 11138  *cxr 11140   < clt 11141  cle 11142  cz 12463  cuz 12727  [,)cico 13242  [,]cicc 13243  ...cfz 13402  seqcseq 13903  abscabs 15136  cli 15386  Σcsu 15588  Σ^csumge0 46400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-sumge0 46401
This theorem is referenced by:  sge0isummpt  46468
  Copyright terms: Public domain W3C validator