Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0seq Structured version   Visualization version   GIF version

Theorem sge0seq 43082
Description: A series of nonnegative reals agrees with the generalized sum of nonnegative reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sge0seq.m (𝜑𝑀 ∈ ℤ)
sge0seq.z 𝑍 = (ℤ𝑀)
sge0seq.f (𝜑𝐹:𝑍⟶(0[,)+∞))
sge0seq.g 𝐺 = seq𝑀( + , 𝐹)
Assertion
Ref Expression
sge0seq (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ*, < ))

Proof of Theorem sge0seq
Dummy variables 𝑖 𝑘 𝑗 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0seq.z . . . . . . 7 𝑍 = (ℤ𝑀)
2 sge0seq.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
3 rge0ssre 12838 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
4 sge0seq.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(0[,)+∞))
54ffvelrnda 6832 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
63, 5sseldi 3916 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
7 readdcl 10613 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑘 + 𝑖) ∈ ℝ)
87adantl 485 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
91, 2, 6, 8seqf 13391 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
10 sge0seq.g . . . . . . . 8 𝐺 = seq𝑀( + , 𝐹)
1110a1i 11 . . . . . . 7 (𝜑𝐺 = seq𝑀( + , 𝐹))
1211feq1d 6476 . . . . . 6 (𝜑 → (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ))
139, 12mpbird 260 . . . . 5 (𝜑𝐺:𝑍⟶ℝ)
1413frnd 6498 . . . 4 (𝜑 → ran 𝐺 ⊆ ℝ)
15 ressxr 10678 . . . . 5 ℝ ⊆ ℝ*
1615a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℝ*)
1714, 16sstrd 3928 . . 3 (𝜑 → ran 𝐺 ⊆ ℝ*)
181fvexi 6663 . . . . 5 𝑍 ∈ V
1918a1i 11 . . . 4 (𝜑𝑍 ∈ V)
20 icossicc 12818 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2120a1i 11 . . . . 5 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
224, 21fssd 6506 . . . 4 (𝜑𝐹:𝑍⟶(0[,]+∞))
2319, 22sge0xrcl 43021 . . 3 (𝜑 → (Σ^𝐹) ∈ ℝ*)
24 simpr 488 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ∈ ran 𝐺)
2513ffnd 6492 . . . . . . . 8 (𝜑𝐺 Fn 𝑍)
26 fvelrnb 6705 . . . . . . . 8 (𝐺 Fn 𝑍 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
2725, 26syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
2827adantr 484 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
2924, 28mpbid 235 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
3020, 5sseldi 3916 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,]+∞))
31 elfzuz 12902 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3231, 1eleqtrrdi 2904 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3332ssriv 3922 . . . . . . . . . . . 12 (𝑀...𝑗) ⊆ 𝑍
3433a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑀...𝑗) ⊆ 𝑍)
3519, 30, 34sge0lessmpt 43035 . . . . . . . . . 10 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
36353ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
37 fzfid 13340 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...𝑗) ∈ Fin)
3832, 5sylan2 595 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ (0[,)+∞))
3937, 38sge0fsummpt 43026 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
40393ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
41 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
4232adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
43 eqidd 2802 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
4441, 42, 43syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) = (𝐹𝑘))
451eleq2i 2884 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
4645biimpi 219 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
4746adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
486recnd 10662 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4941, 42, 48syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5044, 47, 49fsumser 15083 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
51503adant3 1129 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
5240, 51eqtrd 2836 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = (seq𝑀( + , 𝐹)‘𝑗))
5310eqcomi 2810 . . . . . . . . . . . . 13 seq𝑀( + , 𝐹) = 𝐺
5453fveq1i 6650 . . . . . . . . . . . 12 (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗)
5554a1i 11 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗))
56 simp3 1135 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
5752, 55, 563eqtrrd 2841 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))))
584feqmptd 6712 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
5958fveq2d 6653 . . . . . . . . . . 11 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
60593ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
6157, 60breq12d 5046 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝑧 ≤ (Σ^𝐹) ↔ (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘)))))
6236, 61mpbird 260 . . . . . . . 8 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 ≤ (Σ^𝐹))
63623exp 1116 . . . . . . 7 (𝜑 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
6463adantr 484 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
6564rexlimdv 3245 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹)))
6629, 65mpd 15 . . . 4 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ≤ (Σ^𝐹))
6766ralrimiva 3152 . . 3 (𝜑 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹))
68 nfv 1915 . . . . . . . 8 𝑘((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹))
6918a1i 11 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑍 ∈ V)
705ad4ant14 751 . . . . . . . 8 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
71 simplr 768 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑧 ∈ ℝ)
72 simpr 488 . . . . . . . . . 10 ((𝜑𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^𝐹))
7359adantr 484 . . . . . . . . . 10 ((𝜑𝑧 < (Σ^𝐹)) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7472, 73breqtrd 5059 . . . . . . . . 9 ((𝜑𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7574adantlr 714 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7668, 69, 70, 71, 75sge0gtfsumgt 43079 . . . . . . 7 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘𝑤 (𝐹𝑘))
7723ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑀 ∈ ℤ)
78 elpwinss 41680 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤𝑍)
79783ad2ant2 1131 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑤𝑍)
80 elinel2 4126 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤 ∈ Fin)
81803ad2ant2 1131 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑤 ∈ Fin)
8277, 1, 79, 81uzfissfz 41955 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗))
83823adant1r 1174 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗))
84 simpl1r 1222 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 ∈ ℝ)
8580adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑤 ∈ Fin)
8658, 6fmpt3d 6861 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝑍⟶ℝ)
8786ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → 𝐹:𝑍⟶ℝ)
8878sselda 3918 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑤) → 𝑘𝑍)
8988adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → 𝑘𝑍)
9087, 89ffvelrnd 6833 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → (𝐹𝑘) ∈ ℝ)
9185, 90fsumrecl 15087 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
9291ad4ant13 750 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
93923adantl3 1165 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
9432, 6sylan2 595 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
9537, 94fsumrecl 15087 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
9695ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
97963adantl3 1165 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
98 simpl3 1190 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘𝑤 (𝐹𝑘))
9937adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → (𝑀...𝑗) ∈ Fin)
10094adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
101 0xr 10681 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ*
102101a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
103 pnfxr 10688 . . . . . . . . . . . . . . . . . . . . 21 +∞ ∈ ℝ*
104103a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
105 icogelb 12780 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑘) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑘))
106102, 104, 5, 105syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
10732, 106sylan2 595 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹𝑘))
108107adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹𝑘))
109 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → 𝑤 ⊆ (𝑀...𝑗))
11099, 100, 108, 109fsumless 15147 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
111110adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1121113ad2antl1 1182 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
11384, 93, 97, 98, 112ltletrd 10793 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
114113ex 416 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → (𝑤 ⊆ (𝑀...𝑗) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
115114reximdv 3235 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → (∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
11683, 115mpd 15 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1171163exp 1116 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))))
118117adantr 484 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))))
119118rexlimdv 3245 . . . . . . 7 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
12076, 119mpd 15 . . . . . 6 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1219ffnd 6492 . . . . . . . . . . . . . . 15 (𝜑 → seq𝑀( + , 𝐹) Fn 𝑍)
122121adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → seq𝑀( + , 𝐹) Fn 𝑍)
12347, 45sylibr 237 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗𝑍)
124 fnfvelrn 6829 . . . . . . . . . . . . . 14 ((seq𝑀( + , 𝐹) Fn 𝑍𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹))
125122, 123, 124syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹))
12610a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → 𝐺 = seq𝑀( + , 𝐹))
127126rneqd 5776 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → ran 𝐺 = ran seq𝑀( + , 𝐹))
12850, 127eleq12d 2887 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺 ↔ (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹)))
129125, 128mpbird 260 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
130129adantlr 714 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
1311303adant3 1129 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
132 simp3 1135 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
133 breq2 5037 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → (𝑧 < 𝑦𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
134133rspcev 3574 . . . . . . . . . 10 ((Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
135131, 132, 134syl2anc 587 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
1361353exp 1116 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → (𝑗𝑍 → (𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)))
137136rexlimdv 3245 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
138137adantr 484 . . . . . 6 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
139120, 138mpd 15 . . . . 5 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
140139ex 416 . . . 4 ((𝜑𝑧 ∈ ℝ) → (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
141140ralrimiva 3152 . . 3 (𝜑 → ∀𝑧 ∈ ℝ (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
142 supxr2 12699 . . 3 (((ran 𝐺 ⊆ ℝ* ∧ (Σ^𝐹) ∈ ℝ*) ∧ (∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹) ∧ ∀𝑧 ∈ ℝ (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))) → sup(ran 𝐺, ℝ*, < ) = (Σ^𝐹))
14317, 23, 67, 141, 142syl22anc 837 . 2 (𝜑 → sup(ran 𝐺, ℝ*, < ) = (Σ^𝐹))
144143eqcomd 2807 1 (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110  Vcvv 3444  cin 3883  wss 3884  𝒫 cpw 4500   class class class wbr 5033  cmpt 5113  ran crn 5524   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139  Fincfn 8496  supcsup 8892  cc 10528  cr 10529  0cc0 10530   + caddc 10533  +∞cpnf 10665  *cxr 10667   < clt 10668  cle 10669  cz 11973  cuz 12235  [,)cico 12732  [,]cicc 12733  ...cfz 12889  seqcseq 13368  Σcsu 15038  Σ^csumge0 42998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-sumge0 42999
This theorem is referenced by:  voliunsge0lem  43108  ovolval2  43280
  Copyright terms: Public domain W3C validator