Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0seq Structured version   Visualization version   GIF version

Theorem sge0seq 41453
Description: A series of nonnegative reals agrees with the generalized sum of nonnegative reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sge0seq.m (𝜑𝑀 ∈ ℤ)
sge0seq.z 𝑍 = (ℤ𝑀)
sge0seq.f (𝜑𝐹:𝑍⟶(0[,)+∞))
sge0seq.g 𝐺 = seq𝑀( + , 𝐹)
Assertion
Ref Expression
sge0seq (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ*, < ))

Proof of Theorem sge0seq
Dummy variables 𝑖 𝑘 𝑗 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0seq.z . . . . . . 7 𝑍 = (ℤ𝑀)
2 sge0seq.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
3 rge0ssre 12569 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
4 sge0seq.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(0[,)+∞))
54ffvelrnda 6607 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
63, 5sseldi 3824 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
7 readdcl 10334 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑘 + 𝑖) ∈ ℝ)
87adantl 475 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
91, 2, 6, 8seqf 13115 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
10 sge0seq.g . . . . . . . 8 𝐺 = seq𝑀( + , 𝐹)
1110a1i 11 . . . . . . 7 (𝜑𝐺 = seq𝑀( + , 𝐹))
1211feq1d 6262 . . . . . 6 (𝜑 → (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ))
139, 12mpbird 249 . . . . 5 (𝜑𝐺:𝑍⟶ℝ)
1413frnd 6284 . . . 4 (𝜑 → ran 𝐺 ⊆ ℝ)
15 ressxr 10399 . . . . 5 ℝ ⊆ ℝ*
1615a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℝ*)
1714, 16sstrd 3836 . . 3 (𝜑 → ran 𝐺 ⊆ ℝ*)
181fvexi 6446 . . . . 5 𝑍 ∈ V
1918a1i 11 . . . 4 (𝜑𝑍 ∈ V)
20 icossicc 12548 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2120a1i 11 . . . . 5 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
224, 21fssd 6291 . . . 4 (𝜑𝐹:𝑍⟶(0[,]+∞))
2319, 22sge0xrcl 41392 . . 3 (𝜑 → (Σ^𝐹) ∈ ℝ*)
24 simpr 479 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ∈ ran 𝐺)
2513ffnd 6278 . . . . . . . 8 (𝜑𝐺 Fn 𝑍)
26 fvelrnb 6489 . . . . . . . 8 (𝐺 Fn 𝑍 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
2725, 26syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
2827adantr 474 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
2924, 28mpbid 224 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
3020, 5sseldi 3824 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,]+∞))
31 elfzuz 12630 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3231, 1syl6eleqr 2916 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3332ssriv 3830 . . . . . . . . . . . 12 (𝑀...𝑗) ⊆ 𝑍
3433a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑀...𝑗) ⊆ 𝑍)
3519, 30, 34sge0lessmpt 41406 . . . . . . . . . 10 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
36353ad2ant1 1169 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
37 fzfid 13066 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...𝑗) ∈ Fin)
3832, 5sylan2 588 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ (0[,)+∞))
3937, 38sge0fsummpt 41397 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
40393ad2ant1 1169 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
41 simpll 785 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
4232adantl 475 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
43 eqidd 2825 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
4441, 42, 43syl2anc 581 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) = (𝐹𝑘))
451eleq2i 2897 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
4645biimpi 208 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
4746adantl 475 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
486recnd 10384 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4941, 42, 48syl2anc 581 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5044, 47, 49fsumser 14837 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
51503adant3 1168 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
5240, 51eqtrd 2860 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = (seq𝑀( + , 𝐹)‘𝑗))
5310eqcomi 2833 . . . . . . . . . . . . 13 seq𝑀( + , 𝐹) = 𝐺
5453fveq1i 6433 . . . . . . . . . . . 12 (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗)
5554a1i 11 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗))
56 simp3 1174 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
5752, 55, 563eqtrrd 2865 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))))
584feqmptd 6495 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
5958fveq2d 6436 . . . . . . . . . . 11 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
60593ad2ant1 1169 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
6157, 60breq12d 4885 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝑧 ≤ (Σ^𝐹) ↔ (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘)))))
6236, 61mpbird 249 . . . . . . . 8 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 ≤ (Σ^𝐹))
63623exp 1154 . . . . . . 7 (𝜑 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
6463adantr 474 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
6564rexlimdv 3238 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹)))
6629, 65mpd 15 . . . 4 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ≤ (Σ^𝐹))
6766ralrimiva 3174 . . 3 (𝜑 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹))
68 nfv 2015 . . . . . . . 8 𝑘((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹))
6918a1i 11 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑍 ∈ V)
705ad4ant14 761 . . . . . . . 8 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
71 simplr 787 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑧 ∈ ℝ)
72 simpr 479 . . . . . . . . . 10 ((𝜑𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^𝐹))
7359adantr 474 . . . . . . . . . 10 ((𝜑𝑧 < (Σ^𝐹)) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7472, 73breqtrd 4898 . . . . . . . . 9 ((𝜑𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7574adantlr 708 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7668, 69, 70, 71, 75sge0gtfsumgt 41450 . . . . . . 7 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘𝑤 (𝐹𝑘))
7723ad2ant1 1169 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑀 ∈ ℤ)
78 elpwinss 40032 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤𝑍)
79783ad2ant2 1170 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑤𝑍)
80 elinel2 4026 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤 ∈ Fin)
81803ad2ant2 1170 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑤 ∈ Fin)
8277, 1, 79, 81uzfissfz 40338 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗))
83823adant1r 1229 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗))
84 simpl1r 1301 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 ∈ ℝ)
8580adantl 475 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑤 ∈ Fin)
8658, 6fmpt3d 6634 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝑍⟶ℝ)
8786ad2antrr 719 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → 𝐹:𝑍⟶ℝ)
8878sselda 3826 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑤) → 𝑘𝑍)
8988adantll 707 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → 𝑘𝑍)
9087, 89ffvelrnd 6608 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → (𝐹𝑘) ∈ ℝ)
9185, 90fsumrecl 14841 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
9291ad4ant13 759 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
93923adantl3 1215 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
9432, 6sylan2 588 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
9537, 94fsumrecl 14841 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
9695ad3antrrr 723 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
97963adantl3 1215 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
98 simpl3 1252 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘𝑤 (𝐹𝑘))
9937adantr 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → (𝑀...𝑗) ∈ Fin)
10094adantlr 708 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
101 0xr 10402 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ*
102101a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
103 pnfxr 10409 . . . . . . . . . . . . . . . . . . . . 21 +∞ ∈ ℝ*
104103a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
105 icogelb 12512 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑘) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑘))
106102, 104, 5, 105syl3anc 1496 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
10732, 106sylan2 588 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹𝑘))
108107adantlr 708 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹𝑘))
109 simpr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → 𝑤 ⊆ (𝑀...𝑗))
11099, 100, 108, 109fsumless 14901 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
111110adantlr 708 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1121113ad2antl1 1242 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
11384, 93, 97, 98, 112ltletrd 10515 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
114113ex 403 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → (𝑤 ⊆ (𝑀...𝑗) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
115114reximdv 3223 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → (∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
11683, 115mpd 15 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1171163exp 1154 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))))
118117adantr 474 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))))
119118rexlimdv 3238 . . . . . . 7 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
12076, 119mpd 15 . . . . . 6 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1219ffnd 6278 . . . . . . . . . . . . . . 15 (𝜑 → seq𝑀( + , 𝐹) Fn 𝑍)
122121adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → seq𝑀( + , 𝐹) Fn 𝑍)
12347, 45sylibr 226 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗𝑍)
124 fnfvelrn 6604 . . . . . . . . . . . . . 14 ((seq𝑀( + , 𝐹) Fn 𝑍𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹))
125122, 123, 124syl2anc 581 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹))
12610a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → 𝐺 = seq𝑀( + , 𝐹))
127126rneqd 5584 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → ran 𝐺 = ran seq𝑀( + , 𝐹))
12850, 127eleq12d 2899 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺 ↔ (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹)))
129125, 128mpbird 249 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
130129adantlr 708 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
1311303adant3 1168 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
132 simp3 1174 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
133 breq2 4876 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → (𝑧 < 𝑦𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
134133rspcev 3525 . . . . . . . . . 10 ((Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
135131, 132, 134syl2anc 581 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
1361353exp 1154 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → (𝑗𝑍 → (𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)))
137136rexlimdv 3238 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
138137adantr 474 . . . . . 6 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
139120, 138mpd 15 . . . . 5 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
140139ex 403 . . . 4 ((𝜑𝑧 ∈ ℝ) → (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
141140ralrimiva 3174 . . 3 (𝜑 → ∀𝑧 ∈ ℝ (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
142 supxr2 12431 . . 3 (((ran 𝐺 ⊆ ℝ* ∧ (Σ^𝐹) ∈ ℝ*) ∧ (∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹) ∧ ∀𝑧 ∈ ℝ (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))) → sup(ran 𝐺, ℝ*, < ) = (Σ^𝐹))
14317, 23, 67, 141, 142syl22anc 874 . 2 (𝜑 → sup(ran 𝐺, ℝ*, < ) = (Σ^𝐹))
144143eqcomd 2830 1 (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3116  wrex 3117  Vcvv 3413  cin 3796  wss 3797  𝒫 cpw 4377   class class class wbr 4872  cmpt 4951  ran crn 5342   Fn wfn 6117  wf 6118  cfv 6122  (class class class)co 6904  Fincfn 8221  supcsup 8614  cc 10249  cr 10250  0cc0 10251   + caddc 10254  +∞cpnf 10387  *cxr 10389   < clt 10390  cle 10391  cz 11703  cuz 11967  [,)cico 12464  [,]cicc 12465  ...cfz 12618  seqcseq 13094  Σcsu 14792  Σ^csumge0 41369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-sup 8616  df-oi 8683  df-card 9077  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-n0 11618  df-z 11704  df-uz 11968  df-rp 12112  df-ico 12468  df-icc 12469  df-fz 12619  df-fzo 12760  df-seq 13095  df-exp 13154  df-hash 13410  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-clim 14595  df-sum 14793  df-sumge0 41370
This theorem is referenced by:  voliunsge0lem  41479  ovolval2  41651
  Copyright terms: Public domain W3C validator