Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0seq Structured version   Visualization version   GIF version

Theorem sge0seq 44677
Description: A series of nonnegative reals agrees with the generalized sum of nonnegative reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sge0seq.m (𝜑𝑀 ∈ ℤ)
sge0seq.z 𝑍 = (ℤ𝑀)
sge0seq.f (𝜑𝐹:𝑍⟶(0[,)+∞))
sge0seq.g 𝐺 = seq𝑀( + , 𝐹)
Assertion
Ref Expression
sge0seq (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ*, < ))

Proof of Theorem sge0seq
Dummy variables 𝑖 𝑘 𝑗 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0seq.z . . . . . . 7 𝑍 = (ℤ𝑀)
2 sge0seq.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
3 rge0ssre 13373 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
4 sge0seq.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(0[,)+∞))
54ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
63, 5sselid 3942 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
7 readdcl 11134 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑘 + 𝑖) ∈ ℝ)
87adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
91, 2, 6, 8seqf 13929 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
10 sge0seq.g . . . . . . . 8 𝐺 = seq𝑀( + , 𝐹)
1110a1i 11 . . . . . . 7 (𝜑𝐺 = seq𝑀( + , 𝐹))
1211feq1d 6653 . . . . . 6 (𝜑 → (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ))
139, 12mpbird 256 . . . . 5 (𝜑𝐺:𝑍⟶ℝ)
1413frnd 6676 . . . 4 (𝜑 → ran 𝐺 ⊆ ℝ)
15 ressxr 11199 . . . . 5 ℝ ⊆ ℝ*
1615a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℝ*)
1714, 16sstrd 3954 . . 3 (𝜑 → ran 𝐺 ⊆ ℝ*)
181fvexi 6856 . . . . 5 𝑍 ∈ V
1918a1i 11 . . . 4 (𝜑𝑍 ∈ V)
20 icossicc 13353 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2120a1i 11 . . . . 5 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
224, 21fssd 6686 . . . 4 (𝜑𝐹:𝑍⟶(0[,]+∞))
2319, 22sge0xrcl 44616 . . 3 (𝜑 → (Σ^𝐹) ∈ ℝ*)
24 simpr 485 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ∈ ran 𝐺)
2513ffnd 6669 . . . . . . . 8 (𝜑𝐺 Fn 𝑍)
26 fvelrnb 6903 . . . . . . . 8 (𝐺 Fn 𝑍 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
2725, 26syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
2827adantr 481 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
2924, 28mpbid 231 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
3020, 5sselid 3942 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,]+∞))
31 elfzuz 13437 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3231, 1eleqtrrdi 2849 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3332ssriv 3948 . . . . . . . . . . . 12 (𝑀...𝑗) ⊆ 𝑍
3433a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑀...𝑗) ⊆ 𝑍)
3519, 30, 34sge0lessmpt 44630 . . . . . . . . . 10 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
36353ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
37 fzfid 13878 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...𝑗) ∈ Fin)
3832, 5sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ (0[,)+∞))
3937, 38sge0fsummpt 44621 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
40393ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
41 simpll 765 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
4232adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
43 eqidd 2737 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
4441, 42, 43syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) = (𝐹𝑘))
451eleq2i 2829 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
4645biimpi 215 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
4746adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
486recnd 11183 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4941, 42, 48syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5044, 47, 49fsumser 15615 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
51503adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
5240, 51eqtrd 2776 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = (seq𝑀( + , 𝐹)‘𝑗))
5310eqcomi 2745 . . . . . . . . . . . . 13 seq𝑀( + , 𝐹) = 𝐺
5453fveq1i 6843 . . . . . . . . . . . 12 (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗)
5554a1i 11 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗))
56 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
5752, 55, 563eqtrrd 2781 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))))
584feqmptd 6910 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
5958fveq2d 6846 . . . . . . . . . . 11 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
60593ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
6157, 60breq12d 5118 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝑧 ≤ (Σ^𝐹) ↔ (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘)))))
6236, 61mpbird 256 . . . . . . . 8 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 ≤ (Σ^𝐹))
63623exp 1119 . . . . . . 7 (𝜑 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
6463adantr 481 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
6564rexlimdv 3150 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹)))
6629, 65mpd 15 . . . 4 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ≤ (Σ^𝐹))
6766ralrimiva 3143 . . 3 (𝜑 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹))
68 nfv 1917 . . . . . . . 8 𝑘((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹))
6918a1i 11 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑍 ∈ V)
705ad4ant14 750 . . . . . . . 8 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
71 simplr 767 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑧 ∈ ℝ)
72 simpr 485 . . . . . . . . . 10 ((𝜑𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^𝐹))
7359adantr 481 . . . . . . . . . 10 ((𝜑𝑧 < (Σ^𝐹)) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7472, 73breqtrd 5131 . . . . . . . . 9 ((𝜑𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7574adantlr 713 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7668, 69, 70, 71, 75sge0gtfsumgt 44674 . . . . . . 7 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘𝑤 (𝐹𝑘))
7723ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑀 ∈ ℤ)
78 elpwinss 43247 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤𝑍)
79783ad2ant2 1134 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑤𝑍)
80 elinel2 4156 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤 ∈ Fin)
81803ad2ant2 1134 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑤 ∈ Fin)
8277, 1, 79, 81uzfissfz 43550 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗))
83823adant1r 1177 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗))
84 simpl1r 1225 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 ∈ ℝ)
8580adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑤 ∈ Fin)
8658, 6fmpt3d 7064 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝑍⟶ℝ)
8786ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → 𝐹:𝑍⟶ℝ)
8878sselda 3944 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑤) → 𝑘𝑍)
8988adantll 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → 𝑘𝑍)
9087, 89ffvelcdmd 7036 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → (𝐹𝑘) ∈ ℝ)
9185, 90fsumrecl 15619 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
9291ad4ant13 749 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
93923adantl3 1168 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
9432, 6sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
9537, 94fsumrecl 15619 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
9695ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
97963adantl3 1168 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
98 simpl3 1193 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘𝑤 (𝐹𝑘))
9937adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → (𝑀...𝑗) ∈ Fin)
10094adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
101 0xr 11202 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ*
102101a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
103 pnfxr 11209 . . . . . . . . . . . . . . . . . . . . 21 +∞ ∈ ℝ*
104103a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
105 icogelb 13315 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑘) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑘))
106102, 104, 5, 105syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
10732, 106sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹𝑘))
108107adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹𝑘))
109 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → 𝑤 ⊆ (𝑀...𝑗))
11099, 100, 108, 109fsumless 15681 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
111110adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1121113ad2antl1 1185 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
11384, 93, 97, 98, 112ltletrd 11315 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
114113ex 413 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → (𝑤 ⊆ (𝑀...𝑗) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
115114reximdv 3167 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → (∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
11683, 115mpd 15 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1171163exp 1119 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))))
118117adantr 481 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))))
119118rexlimdv 3150 . . . . . . 7 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
12076, 119mpd 15 . . . . . 6 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1219ffnd 6669 . . . . . . . . . . . . . . 15 (𝜑 → seq𝑀( + , 𝐹) Fn 𝑍)
122121adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → seq𝑀( + , 𝐹) Fn 𝑍)
12347, 45sylibr 233 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗𝑍)
124 fnfvelrn 7031 . . . . . . . . . . . . . 14 ((seq𝑀( + , 𝐹) Fn 𝑍𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹))
125122, 123, 124syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹))
12610a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → 𝐺 = seq𝑀( + , 𝐹))
127126rneqd 5893 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → ran 𝐺 = ran seq𝑀( + , 𝐹))
12850, 127eleq12d 2832 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺 ↔ (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹)))
129125, 128mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
130129adantlr 713 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
1311303adant3 1132 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
132 simp3 1138 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
133 breq2 5109 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → (𝑧 < 𝑦𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
134133rspcev 3581 . . . . . . . . . 10 ((Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
135131, 132, 134syl2anc 584 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
1361353exp 1119 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → (𝑗𝑍 → (𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)))
137136rexlimdv 3150 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
138137adantr 481 . . . . . 6 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
139120, 138mpd 15 . . . . 5 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
140139ex 413 . . . 4 ((𝜑𝑧 ∈ ℝ) → (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
141140ralrimiva 3143 . . 3 (𝜑 → ∀𝑧 ∈ ℝ (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
142 supxr2 13233 . . 3 (((ran 𝐺 ⊆ ℝ* ∧ (Σ^𝐹) ∈ ℝ*) ∧ (∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹) ∧ ∀𝑧 ∈ ℝ (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))) → sup(ran 𝐺, ℝ*, < ) = (Σ^𝐹))
14317, 23, 67, 141, 142syl22anc 837 . 2 (𝜑 → sup(ran 𝐺, ℝ*, < ) = (Σ^𝐹))
144143eqcomd 2742 1 (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  supcsup 9376  cc 11049  cr 11050  0cc0 11051   + caddc 11054  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cz 12499  cuz 12763  [,)cico 13266  [,]cicc 13267  ...cfz 13424  seqcseq 13906  Σcsu 15570  Σ^csumge0 44593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-sumge0 44594
This theorem is referenced by:  voliunsge0lem  44703  ovolval2  44875
  Copyright terms: Public domain W3C validator