Step | Hyp | Ref
| Expression |
1 | | sge0seq.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | sge0seq.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | rge0ssre 13188 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
4 | | sge0seq.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶(0[,)+∞)) |
5 | 4 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (0[,)+∞)) |
6 | 3, 5 | sselid 3919 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
7 | | readdcl 10954 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑘 + 𝑖) ∈ ℝ) |
8 | 7 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ) |
9 | 1, 2, 6, 8 | seqf 13744 |
. . . . . 6
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
10 | | sge0seq.g |
. . . . . . . 8
⊢ 𝐺 = seq𝑀( + , 𝐹) |
11 | 10 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = seq𝑀( + , 𝐹)) |
12 | 11 | feq1d 6585 |
. . . . . 6
⊢ (𝜑 → (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ)) |
13 | 9, 12 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
14 | 13 | frnd 6608 |
. . . 4
⊢ (𝜑 → ran 𝐺 ⊆ ℝ) |
15 | | ressxr 11019 |
. . . . 5
⊢ ℝ
⊆ ℝ* |
16 | 15 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ⊆
ℝ*) |
17 | 14, 16 | sstrd 3931 |
. . 3
⊢ (𝜑 → ran 𝐺 ⊆
ℝ*) |
18 | 1 | fvexi 6788 |
. . . . 5
⊢ 𝑍 ∈ V |
19 | 18 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ V) |
20 | | icossicc 13168 |
. . . . . 6
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
21 | 20 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0[,)+∞) ⊆
(0[,]+∞)) |
22 | 4, 21 | fssd 6618 |
. . . 4
⊢ (𝜑 → 𝐹:𝑍⟶(0[,]+∞)) |
23 | 19, 22 | sge0xrcl 43923 |
. . 3
⊢ (𝜑 →
(Σ^‘𝐹) ∈
ℝ*) |
24 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ran 𝐺) |
25 | 13 | ffnd 6601 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 Fn 𝑍) |
26 | | fvelrnb 6830 |
. . . . . . . 8
⊢ (𝐺 Fn 𝑍 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧)) |
27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧)) |
28 | 27 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧)) |
29 | 24, 28 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧) |
30 | 20, 5 | sselid 3919 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (0[,]+∞)) |
31 | | elfzuz 13252 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ≥‘𝑀)) |
32 | 31, 1 | eleqtrrdi 2850 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ 𝑍) |
33 | 32 | ssriv 3925 |
. . . . . . . . . . . 12
⊢ (𝑀...𝑗) ⊆ 𝑍 |
34 | 33 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀...𝑗) ⊆ 𝑍) |
35 | 19, 30, 34 | sge0lessmpt 43937 |
. . . . . . . . . 10
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) ≤
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
36 | 35 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) ≤
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
37 | | fzfid 13693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀...𝑗) ∈ Fin) |
38 | 32, 5 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ (0[,)+∞)) |
39 | 37, 38 | sge0fsummpt 43928 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
40 | 39 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
41 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑) |
42 | 32 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘 ∈ 𝑍) |
43 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
44 | 41, 42, 43 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
45 | 1 | eleq2i 2830 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝑍 ↔ 𝑗 ∈ (ℤ≥‘𝑀)) |
46 | 45 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑀)) |
47 | 46 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
48 | 6 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
49 | 41, 42, 48 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
50 | 44, 47, 49 | fsumser 15442 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) = (seq𝑀( + , 𝐹)‘𝑗)) |
51 | 50 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) = (seq𝑀( + , 𝐹)‘𝑗)) |
52 | 40, 51 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) →
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) = (seq𝑀( + , 𝐹)‘𝑗)) |
53 | 10 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ seq𝑀( + , 𝐹) = 𝐺 |
54 | 53 | fveq1i 6775 |
. . . . . . . . . . . 12
⊢ (seq𝑀( + , 𝐹)‘𝑗) = (𝐺‘𝑗) |
55 | 54 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → (seq𝑀( + , 𝐹)‘𝑗) = (𝐺‘𝑗)) |
56 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → (𝐺‘𝑗) = 𝑧) |
57 | 52, 55, 56 | 3eqtrrd 2783 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → 𝑧 =
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘)))) |
58 | 4 | feqmptd 6837 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
59 | 58 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘𝐹) =
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
60 | 59 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) →
(Σ^‘𝐹) =
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
61 | 57, 60 | breq12d 5087 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → (𝑧 ≤
(Σ^‘𝐹) ↔
(Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹‘𝑘))) ≤
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))))) |
62 | 36, 61 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ (𝐺‘𝑗) = 𝑧) → 𝑧 ≤
(Σ^‘𝐹)) |
63 | 62 | 3exp 1118 |
. . . . . . 7
⊢ (𝜑 → (𝑗 ∈ 𝑍 → ((𝐺‘𝑗) = 𝑧 → 𝑧 ≤
(Σ^‘𝐹)))) |
64 | 63 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (𝑗 ∈ 𝑍 → ((𝐺‘𝑗) = 𝑧 → 𝑧 ≤
(Σ^‘𝐹)))) |
65 | 64 | rexlimdv 3212 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (∃𝑗 ∈ 𝑍 (𝐺‘𝑗) = 𝑧 → 𝑧 ≤
(Σ^‘𝐹))) |
66 | 29, 65 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ≤
(Σ^‘𝐹)) |
67 | 66 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤
(Σ^‘𝐹)) |
68 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) |
69 | 18 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) → 𝑍 ∈ V) |
70 | 5 | ad4ant14 749 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (0[,)+∞)) |
71 | | simplr 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) → 𝑧 ∈ ℝ) |
72 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 <
(Σ^‘𝐹)) → 𝑧 <
(Σ^‘𝐹)) |
73 | 59 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 <
(Σ^‘𝐹)) →
(Σ^‘𝐹) =
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
74 | 72, 73 | breqtrd 5100 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 <
(Σ^‘𝐹)) → 𝑧 <
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
75 | 74 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) → 𝑧 <
(Σ^‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
76 | 68, 69, 70, 71, 75 | sge0gtfsumgt 43981 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) → ∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) |
77 | 2 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) → 𝑀 ∈ ℤ) |
78 | | elpwinss 42597 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤 ⊆ 𝑍) |
79 | 78 | 3ad2ant2 1133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) → 𝑤 ⊆ 𝑍) |
80 | | elinel2 4130 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤 ∈ Fin) |
81 | 80 | 3ad2ant2 1133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) → 𝑤 ∈ Fin) |
82 | 77, 1, 79, 81 | uzfissfz 42865 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) → ∃𝑗 ∈ 𝑍 𝑤 ⊆ (𝑀...𝑗)) |
83 | 82 | 3adant1r 1176 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) → ∃𝑗 ∈ 𝑍 𝑤 ⊆ (𝑀...𝑗)) |
84 | | simpl1r 1224 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 ∈ ℝ) |
85 | 80 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑤 ∈ Fin) |
86 | 58, 6 | fmpt3d 6990 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
87 | 86 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑤) → 𝐹:𝑍⟶ℝ) |
88 | 78 | sselda 3921 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘 ∈ 𝑤) → 𝑘 ∈ 𝑍) |
89 | 88 | adantll 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑤) → 𝑘 ∈ 𝑍) |
90 | 87, 89 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘 ∈ 𝑤) → (𝐹‘𝑘) ∈ ℝ) |
91 | 85, 90 | fsumrecl 15446 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘 ∈ 𝑤 (𝐹‘𝑘) ∈ ℝ) |
92 | 91 | ad4ant13 748 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ 𝑤 (𝐹‘𝑘) ∈ ℝ) |
93 | 92 | 3adantl3 1167 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ 𝑤 (𝐹‘𝑘) ∈ ℝ) |
94 | 32, 6 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
95 | 37, 94 | fsumrecl 15446 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) ∈ ℝ) |
96 | 95 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) ∈ ℝ) |
97 | 96 | 3adantl3 1167 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) ∈ ℝ) |
98 | | simpl3 1192 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) |
99 | 37 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ⊆ (𝑀...𝑗)) → (𝑀...𝑗) ∈ Fin) |
100 | 94 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
101 | | 0xr 11022 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℝ* |
102 | 101 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ∈
ℝ*) |
103 | | pnfxr 11029 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ +∞
∈ ℝ* |
104 | 103 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → +∞ ∈
ℝ*) |
105 | | icogelb 13130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝐹‘𝑘) ∈ (0[,)+∞)) → 0 ≤ (𝐹‘𝑘)) |
106 | 102, 104,
5, 105 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
107 | 32, 106 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹‘𝑘)) |
108 | 107 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹‘𝑘)) |
109 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑤 ⊆ (𝑀...𝑗)) |
110 | 99, 100, 108, 109 | fsumless 15508 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ 𝑤 (𝐹‘𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
111 | 110 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ 𝑤 (𝐹‘𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
112 | 111 | 3ad2antl1 1184 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ 𝑤 (𝐹‘𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
113 | 84, 93, 97, 98, 112 | ltletrd 11135 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
114 | 113 | ex 413 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) → (𝑤 ⊆ (𝑀...𝑗) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘))) |
115 | 114 | reximdv 3202 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) → (∃𝑗 ∈ 𝑍 𝑤 ⊆ (𝑀...𝑗) → ∃𝑗 ∈ 𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘))) |
116 | 83, 115 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘)) → ∃𝑗 ∈ 𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
117 | 116 | 3exp 1118 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘) → ∃𝑗 ∈ 𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)))) |
118 | 117 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘) → ∃𝑗 ∈ 𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)))) |
119 | 118 | rexlimdv 3212 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) → (∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘 ∈ 𝑤 (𝐹‘𝑘) → ∃𝑗 ∈ 𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘))) |
120 | 76, 119 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) → ∃𝑗 ∈ 𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
121 | 9 | ffnd 6601 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → seq𝑀( + , 𝐹) Fn 𝑍) |
122 | 121 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → seq𝑀( + , 𝐹) Fn 𝑍) |
123 | 47, 45 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
124 | | fnfvelrn 6958 |
. . . . . . . . . . . . . 14
⊢
((seq𝑀( + , 𝐹) Fn 𝑍 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹)) |
125 | 122, 123,
124 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹)) |
126 | 10 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐺 = seq𝑀( + , 𝐹)) |
127 | 126 | rneqd 5847 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ran 𝐺 = ran seq𝑀( + , 𝐹)) |
128 | 50, 127 | eleq12d 2833 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) ∈ ran 𝐺 ↔ (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹))) |
129 | 125, 128 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) ∈ ran 𝐺) |
130 | 129 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) ∈ ran 𝐺) |
131 | 130 | 3adant3 1131 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑗 ∈ 𝑍 ∧ 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) ∈ ran 𝐺) |
132 | | simp3 1137 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑗 ∈ 𝑍 ∧ 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) |
133 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑦 = Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) → (𝑧 < 𝑦 ↔ 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘))) |
134 | 133 | rspcev 3561 |
. . . . . . . . . 10
⊢
((Σ𝑘 ∈
(𝑀...𝑗)(𝐹‘𝑘) ∈ ran 𝐺 ∧ 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦) |
135 | 131, 132,
134 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑗 ∈ 𝑍 ∧ 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦) |
136 | 135 | 3exp 1118 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝑗 ∈ 𝑍 → (𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))) |
137 | 136 | rexlimdv 3212 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (∃𝑗 ∈ 𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)) |
138 | 137 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) → (∃𝑗 ∈ 𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹‘𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)) |
139 | 120, 138 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑧 <
(Σ^‘𝐹)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦) |
140 | 139 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝑧 <
(Σ^‘𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)) |
141 | 140 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ ℝ (𝑧 <
(Σ^‘𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)) |
142 | | supxr2 13048 |
. . 3
⊢ (((ran
𝐺 ⊆
ℝ* ∧ (Σ^‘𝐹) ∈ ℝ*)
∧ (∀𝑧 ∈ ran
𝐺 𝑧 ≤
(Σ^‘𝐹) ∧ ∀𝑧 ∈ ℝ (𝑧 <
(Σ^‘𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))) → sup(ran 𝐺, ℝ*, < ) =
(Σ^‘𝐹)) |
143 | 17, 23, 67, 141, 142 | syl22anc 836 |
. 2
⊢ (𝜑 → sup(ran 𝐺, ℝ*, < ) =
(Σ^‘𝐹)) |
144 | 143 | eqcomd 2744 |
1
⊢ (𝜑 →
(Σ^‘𝐹) = sup(ran 𝐺, ℝ*, <
)) |