MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2gt1lt2 Structured version   Visualization version   GIF version

Theorem sqrt2gt1lt2 14636
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
Assertion
Ref Expression
sqrt2gt1lt2 (1 < (√‘2) ∧ (√‘2) < 2)

Proof of Theorem sqrt2gt1lt2
StepHypRef Expression
1 sqrt1 14633 . . 3 (√‘1) = 1
2 1lt2 11811 . . . 4 1 < 2
3 1re 10643 . . . . 5 1 ∈ ℝ
4 0le1 11165 . . . . 5 0 ≤ 1
5 2re 11714 . . . . 5 2 ∈ ℝ
6 0le2 11742 . . . . 5 0 ≤ 2
7 sqrtlt 14623 . . . . 5 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → (1 < 2 ↔ (√‘1) < (√‘2)))
83, 4, 5, 6, 7mp4an 691 . . . 4 (1 < 2 ↔ (√‘1) < (√‘2))
92, 8mpbi 232 . . 3 (√‘1) < (√‘2)
101, 9eqbrtrri 5091 . 2 1 < (√‘2)
11 2lt4 11815 . . . 4 2 < 4
12 4re 11724 . . . . 5 4 ∈ ℝ
13 0re 10645 . . . . . 6 0 ∈ ℝ
14 4pos 11747 . . . . . 6 0 < 4
1513, 12, 14ltleii 10765 . . . . 5 0 ≤ 4
16 sqrtlt 14623 . . . . 5 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4)))
175, 6, 12, 15, 16mp4an 691 . . . 4 (2 < 4 ↔ (√‘2) < (√‘4))
1811, 17mpbi 232 . . 3 (√‘2) < (√‘4)
19 sqrt4 14634 . . 3 (√‘4) = 2
2018, 19breqtri 5093 . 2 (√‘2) < 2
2110, 20pm3.2i 473 1 (1 < (√‘2) ∧ (√‘2) < 2)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2114   class class class wbr 5068  cfv 6357  cr 10538  0cc0 10539  1c1 10540   < clt 10677  cle 10678  2c2 11695  4c4 11697  csqrt 14594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator