|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sqrt2gt1lt2 | Structured version Visualization version GIF version | ||
| Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| sqrt2gt1lt2 | ⊢ (1 < (√‘2) ∧ (√‘2) < 2) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sqrt1 15311 | . . 3 ⊢ (√‘1) = 1 | |
| 2 | 1lt2 12438 | . . . 4 ⊢ 1 < 2 | |
| 3 | 1re 11262 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 4 | 0le1 11787 | . . . . 5 ⊢ 0 ≤ 1 | |
| 5 | 2re 12341 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 6 | 0le2 12369 | . . . . 5 ⊢ 0 ≤ 2 | |
| 7 | sqrtlt 15301 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → (1 < 2 ↔ (√‘1) < (√‘2))) | |
| 8 | 3, 4, 5, 6, 7 | mp4an 693 | . . . 4 ⊢ (1 < 2 ↔ (√‘1) < (√‘2)) | 
| 9 | 2, 8 | mpbi 230 | . . 3 ⊢ (√‘1) < (√‘2) | 
| 10 | 1, 9 | eqbrtrri 5165 | . 2 ⊢ 1 < (√‘2) | 
| 11 | 2lt4 12442 | . . . 4 ⊢ 2 < 4 | |
| 12 | 4re 12351 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 13 | 0re 11264 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 14 | 4pos 12374 | . . . . . 6 ⊢ 0 < 4 | |
| 15 | 13, 12, 14 | ltleii 11385 | . . . . 5 ⊢ 0 ≤ 4 | 
| 16 | sqrtlt 15301 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4))) | |
| 17 | 5, 6, 12, 15, 16 | mp4an 693 | . . . 4 ⊢ (2 < 4 ↔ (√‘2) < (√‘4)) | 
| 18 | 11, 17 | mpbi 230 | . . 3 ⊢ (√‘2) < (√‘4) | 
| 19 | sqrt4 15312 | . . 3 ⊢ (√‘4) = 2 | |
| 20 | 18, 19 | breqtri 5167 | . 2 ⊢ (√‘2) < 2 | 
| 21 | 10, 20 | pm3.2i 470 | 1 ⊢ (1 < (√‘2) ∧ (√‘2) < 2) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 ℝcr 11155 0cc0 11156 1c1 11157 < clt 11296 ≤ cle 11297 2c2 12322 4c4 12324 √csqrt 15273 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |