Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqrt2gt1lt2 | Structured version Visualization version GIF version |
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.) |
Ref | Expression |
---|---|
sqrt2gt1lt2 | ⊢ (1 < (√‘2) ∧ (√‘2) < 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrt1 15032 | . . 3 ⊢ (√‘1) = 1 | |
2 | 1lt2 12194 | . . . 4 ⊢ 1 < 2 | |
3 | 1re 11025 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 0le1 11548 | . . . . 5 ⊢ 0 ≤ 1 | |
5 | 2re 12097 | . . . . 5 ⊢ 2 ∈ ℝ | |
6 | 0le2 12125 | . . . . 5 ⊢ 0 ≤ 2 | |
7 | sqrtlt 15022 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → (1 < 2 ↔ (√‘1) < (√‘2))) | |
8 | 3, 4, 5, 6, 7 | mp4an 691 | . . . 4 ⊢ (1 < 2 ↔ (√‘1) < (√‘2)) |
9 | 2, 8 | mpbi 229 | . . 3 ⊢ (√‘1) < (√‘2) |
10 | 1, 9 | eqbrtrri 5104 | . 2 ⊢ 1 < (√‘2) |
11 | 2lt4 12198 | . . . 4 ⊢ 2 < 4 | |
12 | 4re 12107 | . . . . 5 ⊢ 4 ∈ ℝ | |
13 | 0re 11027 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | 4pos 12130 | . . . . . 6 ⊢ 0 < 4 | |
15 | 13, 12, 14 | ltleii 11148 | . . . . 5 ⊢ 0 ≤ 4 |
16 | sqrtlt 15022 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4))) | |
17 | 5, 6, 12, 15, 16 | mp4an 691 | . . . 4 ⊢ (2 < 4 ↔ (√‘2) < (√‘4)) |
18 | 11, 17 | mpbi 229 | . . 3 ⊢ (√‘2) < (√‘4) |
19 | sqrt4 15033 | . . 3 ⊢ (√‘4) = 2 | |
20 | 18, 19 | breqtri 5106 | . 2 ⊢ (√‘2) < 2 |
21 | 10, 20 | pm3.2i 472 | 1 ⊢ (1 < (√‘2) ∧ (√‘2) < 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 ℝcr 10920 0cc0 10921 1c1 10922 < clt 11059 ≤ cle 11060 2c2 12078 4c4 12080 √csqrt 14993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |