Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqrt2gt1lt2 | Structured version Visualization version GIF version |
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.) |
Ref | Expression |
---|---|
sqrt2gt1lt2 | ⊢ (1 < (√‘2) ∧ (√‘2) < 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrt1 14964 | . . 3 ⊢ (√‘1) = 1 | |
2 | 1lt2 12127 | . . . 4 ⊢ 1 < 2 | |
3 | 1re 10959 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 0le1 11481 | . . . . 5 ⊢ 0 ≤ 1 | |
5 | 2re 12030 | . . . . 5 ⊢ 2 ∈ ℝ | |
6 | 0le2 12058 | . . . . 5 ⊢ 0 ≤ 2 | |
7 | sqrtlt 14954 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → (1 < 2 ↔ (√‘1) < (√‘2))) | |
8 | 3, 4, 5, 6, 7 | mp4an 689 | . . . 4 ⊢ (1 < 2 ↔ (√‘1) < (√‘2)) |
9 | 2, 8 | mpbi 229 | . . 3 ⊢ (√‘1) < (√‘2) |
10 | 1, 9 | eqbrtrri 5101 | . 2 ⊢ 1 < (√‘2) |
11 | 2lt4 12131 | . . . 4 ⊢ 2 < 4 | |
12 | 4re 12040 | . . . . 5 ⊢ 4 ∈ ℝ | |
13 | 0re 10961 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | 4pos 12063 | . . . . . 6 ⊢ 0 < 4 | |
15 | 13, 12, 14 | ltleii 11081 | . . . . 5 ⊢ 0 ≤ 4 |
16 | sqrtlt 14954 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4))) | |
17 | 5, 6, 12, 15, 16 | mp4an 689 | . . . 4 ⊢ (2 < 4 ↔ (√‘2) < (√‘4)) |
18 | 11, 17 | mpbi 229 | . . 3 ⊢ (√‘2) < (√‘4) |
19 | sqrt4 14965 | . . 3 ⊢ (√‘4) = 2 | |
20 | 18, 19 | breqtri 5103 | . 2 ⊢ (√‘2) < 2 |
21 | 10, 20 | pm3.2i 470 | 1 ⊢ (1 < (√‘2) ∧ (√‘2) < 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 ℝcr 10854 0cc0 10855 1c1 10856 < clt 10993 ≤ cle 10994 2c2 12011 4c4 12013 √csqrt 14925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |