![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrt2gt1lt2 | Structured version Visualization version GIF version |
Description: The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.) |
Ref | Expression |
---|---|
sqrt2gt1lt2 | ⊢ (1 < (√‘2) ∧ (√‘2) < 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrt1 15214 | . . 3 ⊢ (√‘1) = 1 | |
2 | 1lt2 12379 | . . . 4 ⊢ 1 < 2 | |
3 | 1re 11210 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 0le1 11733 | . . . . 5 ⊢ 0 ≤ 1 | |
5 | 2re 12282 | . . . . 5 ⊢ 2 ∈ ℝ | |
6 | 0le2 12310 | . . . . 5 ⊢ 0 ≤ 2 | |
7 | sqrtlt 15204 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → (1 < 2 ↔ (√‘1) < (√‘2))) | |
8 | 3, 4, 5, 6, 7 | mp4an 691 | . . . 4 ⊢ (1 < 2 ↔ (√‘1) < (√‘2)) |
9 | 2, 8 | mpbi 229 | . . 3 ⊢ (√‘1) < (√‘2) |
10 | 1, 9 | eqbrtrri 5170 | . 2 ⊢ 1 < (√‘2) |
11 | 2lt4 12383 | . . . 4 ⊢ 2 < 4 | |
12 | 4re 12292 | . . . . 5 ⊢ 4 ∈ ℝ | |
13 | 0re 11212 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | 4pos 12315 | . . . . . 6 ⊢ 0 < 4 | |
15 | 13, 12, 14 | ltleii 11333 | . . . . 5 ⊢ 0 ≤ 4 |
16 | sqrtlt 15204 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4))) | |
17 | 5, 6, 12, 15, 16 | mp4an 691 | . . . 4 ⊢ (2 < 4 ↔ (√‘2) < (√‘4)) |
18 | 11, 17 | mpbi 229 | . . 3 ⊢ (√‘2) < (√‘4) |
19 | sqrt4 15215 | . . 3 ⊢ (√‘4) = 2 | |
20 | 18, 19 | breqtri 5172 | . 2 ⊢ (√‘2) < 2 |
21 | 10, 20 | pm3.2i 471 | 1 ⊢ (1 < (√‘2) ∧ (√‘2) < 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 ℝcr 11105 0cc0 11106 1c1 11107 < clt 11244 ≤ cle 11245 2c2 12263 4c4 12265 √csqrt 15176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |