Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem5 Structured version   Visualization version   GIF version

Theorem wallispilem5 44300
Description: The sequence 𝐻 converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem5.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispilem5.2 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
wallispilem5.3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
wallispilem5.4 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
wallispilem5.5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
Assertion
Ref Expression
wallispilem5 𝐻 ⇝ 1
Distinct variable groups:   𝑘,𝑛,𝑥   𝑥,𝐹   𝑘,𝐺   𝑘,𝐿
Allowed substitution hints:   𝐹(𝑘,𝑛)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑘,𝑛)   𝐼(𝑥,𝑘,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem wallispilem5
StepHypRef Expression
1 wallispilem5.1 . . 3 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
2 wallispilem5.2 . . 3 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
3 wallispilem5.3 . . 3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
4 wallispilem5.4 . . 3 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
51, 2, 3, 4wallispilem4 44299 . 2 𝐺 = 𝐻
6 nnuz 12806 . . . 4 ℕ = (ℤ‘1)
7 1zzd 12534 . . . 4 (⊤ → 1 ∈ ℤ)
8 wallispilem5.5 . . . . 5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
9 2cnd 12231 . . . . 5 (⊤ → 2 ∈ ℂ)
10 2ne0 12257 . . . . . 6 2 ≠ 0
1110a1i 11 . . . . 5 (⊤ → 2 ≠ 0)
12 1cnd 11150 . . . . 5 (⊤ → 1 ∈ ℂ)
138, 9, 11, 12clim1fr1 43832 . . . 4 (⊤ → 𝐿 ⇝ 1)
14 nnex 12159 . . . . . . 7 ℕ ∈ V
1514mptex 7173 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) ∈ V
163, 15eqeltri 2834 . . . . 5 𝐺 ∈ V
1716a1i 11 . . . 4 (⊤ → 𝐺 ∈ V)
18 2nn0 12430 . . . . . . . . . . . 12 2 ∈ ℕ0
1918a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℕ0)
20 nnnn0 12420 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2119, 20nn0mulcld 12478 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ0)
22 1nn0 12429 . . . . . . . . . . 11 1 ∈ ℕ0
2322a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℕ0)
2421, 23nn0addcld 12477 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℕ0)
2524nn0red 12474 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
2621nn0red 12474 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
27 2cnd 12231 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℂ)
28 nncn 12161 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2910a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ≠ 0)
30 nnne0 12187 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3127, 28, 29, 30mulne0d 11807 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ≠ 0)
3225, 26, 31redivcld 11983 . . . . . . 7 (𝑛 ∈ ℕ → (((2 · 𝑛) + 1) / (2 · 𝑛)) ∈ ℝ)
338, 32fmpti 7060 . . . . . 6 𝐿:ℕ⟶ℝ
3433a1i 11 . . . . 5 (⊤ → 𝐿:ℕ⟶ℝ)
3534ffvelcdmda 7035 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐿𝑘) ∈ ℝ)
362wallispilem3 44298 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℕ0 → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3721, 36syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3837rpred 12957 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ)
392wallispilem3 44298 . . . . . . . . 9 (((2 · 𝑛) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4024, 39syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4138, 40rerpdivcld 12988 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) ∈ ℝ)
423, 41fmpti 7060 . . . . . 6 𝐺:ℕ⟶ℝ
4342a1i 11 . . . . 5 (⊤ → 𝐺:ℕ⟶ℝ)
4443ffvelcdmda 7035 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
4518a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
46 nnnn0 12420 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4745, 46nn0mulcld 12478 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ0)
482wallispilem3 44298 . . . . . . . . . 10 ((2 · 𝑘) ∈ ℕ0 → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
4947, 48syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
5049rpred 12957 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ)
51 2nn 12226 . . . . . . . . . . . . 13 2 ∈ ℕ
5251a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℕ)
53 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
5452, 53nnmulcld 12206 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ)
55 nnm1nn0 12454 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
572wallispilem3 44298 . . . . . . . . . 10 (((2 · 𝑘) − 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5856, 57syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5958rpred 12957 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ)
6022a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℕ0)
6147, 60nn0addcld 12477 . . . . . . . . 9 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ0)
622wallispilem3 44298 . . . . . . . . 9 (((2 · 𝑘) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
6361, 62syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
64 2cnd 12231 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
65 nncn 12161 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
6664, 65mulcld 11175 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
67 1cnd 11150 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 1 ∈ ℂ)
6866, 67npcand 11516 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((2 · 𝑘) − 1) + 1) = (2 · 𝑘))
6968fveq2d 6846 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) = (𝐼‘(2 · 𝑘)))
702, 56wallispilem1 44296 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7169, 70eqbrtrrd 5129 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7250, 59, 63, 71lediv1dd 13015 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
7366, 67addcld 11174 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℂ)
7410a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ≠ 0)
75 nnne0 12187 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
7664, 65, 74, 75mulne0d 11807 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ≠ 0)
7773, 66, 76divcld 11931 . . . . . . . . 9 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) ∈ ℂ)
7863rpcnd 12959 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℂ)
7963rpne0d 12962 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≠ 0)
8077, 78, 79divcan4d 11937 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
81 2re 12227 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℝ)
83 nnre 12160 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
8482, 83remulcld 11185 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
85 1red 11156 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 ∈ ℝ)
8684, 85readdcld 11184 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ)
8745nn0ge0d 12476 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 ≤ 2)
88 nnge1 12181 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
8982, 83, 87, 88lemulge11d 12092 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ≤ (2 · 𝑘))
9084ltp1d 12085 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) < ((2 · 𝑘) + 1))
9182, 84, 86, 89, 90lelttrd 11313 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 < ((2 · 𝑘) + 1))
9282, 86, 91ltled 11303 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 2 ≤ ((2 · 𝑘) + 1))
9345nn0zd 12525 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℤ)
9461nn0zd 12525 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℤ)
95 eluz 12777 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑘) + 1) ∈ ℤ) → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9693, 94, 95syl2anc 584 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9792, 96mpbird 256 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ (ℤ‘2))
982, 97itgsinexp 44186 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))))
9966, 67pncand 11513 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
10099oveq1d 7372 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) = ((2 · 𝑘) / ((2 · 𝑘) + 1)))
101 1e2m1 12280 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
102101a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 = (2 − 1))
103102oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) = ((2 · 𝑘) − (2 − 1)))
10466, 64, 67subsub3d 11542 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − (2 − 1)) = (((2 · 𝑘) + 1) − 2))
105103, 104eqtr2d 2777 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 2) = ((2 · 𝑘) − 1))
106105fveq2d 6846 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) + 1) − 2)) = (𝐼‘((2 · 𝑘) − 1)))
107100, 106oveq12d 7375 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
10898, 107eqtrd 2776 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
109108oveq2d 7373 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11054peano2nnd 12170 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ)
111110nnne0d 12203 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ≠ 0)
11266, 73, 111divcld 11931 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) / ((2 · 𝑘) + 1)) ∈ ℂ)
11358rpcnd 12959 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℂ)
11477, 112, 113mulassd 11178 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11573, 66, 111, 76divcan6d 11950 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = 1)
116115oveq1d 7372 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (1 · (𝐼‘((2 · 𝑘) − 1))))
117113mulid2d 11173 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
118116, 117eqtrd 2776 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
119109, 114, 1183eqtr2d 2782 . . . . . . . . 9 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = (𝐼‘((2 · 𝑘) − 1)))
120119oveq1d 7372 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12180, 120eqtr3d 2778 . . . . . . 7 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12272, 121breqtrrd 5133 . . . . . 6 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ (((2 · 𝑘) + 1) / (2 · 𝑘)))
12349, 63rpdivcld 12974 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+)
124 nfcv 2907 . . . . . . . 8 𝑛𝑘
125 nfmpt1 5213 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
1262, 125nfcxfr 2905 . . . . . . . . . 10 𝑛𝐼
127 nfcv 2907 . . . . . . . . . 10 𝑛(2 · 𝑘)
128126, 127nffv 6852 . . . . . . . . 9 𝑛(𝐼‘(2 · 𝑘))
129 nfcv 2907 . . . . . . . . 9 𝑛 /
130 nfcv 2907 . . . . . . . . . 10 𝑛((2 · 𝑘) + 1)
131126, 130nffv 6852 . . . . . . . . 9 𝑛(𝐼‘((2 · 𝑘) + 1))
132128, 129, 131nfov 7387 . . . . . . . 8 𝑛((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1)))
133 oveq2 7365 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
134133fveq2d 6846 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘(2 · 𝑛)) = (𝐼‘(2 · 𝑘)))
135133fvoveq1d 7379 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘((2 · 𝑛) + 1)) = (𝐼‘((2 · 𝑘) + 1)))
136134, 135oveq12d 7375 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
137124, 132, 136, 3fvmptf 6969 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+) → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
138123, 137mpdan 685 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
1398a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))))
140 simpr 485 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
141140oveq2d 7373 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
142141oveq1d 7372 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
143142, 141oveq12d 7375 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (((2 · 𝑛) + 1) / (2 · 𝑛)) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
144139, 143, 53, 77fvmptd 6955 . . . . . 6 (𝑘 ∈ ℕ → (𝐿𝑘) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
145122, 138, 1443brtr4d 5137 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐿𝑘))
146145adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐿𝑘))
14778, 79dividd 11929 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) = 1)
14863rpred 12957 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ)
1492, 47wallispilem1 44296 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≤ (𝐼‘(2 · 𝑘)))
150148, 50, 63, 149lediv1dd 13015 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
151147, 150eqbrtrrd 5129 . . . . . 6 (𝑘 ∈ ℕ → 1 ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
152151, 138breqtrrd 5133 . . . . 5 (𝑘 ∈ ℕ → 1 ≤ (𝐺𝑘))
153152adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 ≤ (𝐺𝑘))
1546, 7, 13, 17, 35, 44, 146, 153climsqz2 15524 . . 3 (⊤ → 𝐺 ⇝ 1)
155154mptru 1548 . 2 𝐺 ⇝ 1
1565, 155eqbrtrri 5128 1 𝐻 ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  Vcvv 3445   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  (,)cioo 13264  seqcseq 13906  cexp 13967  cli 15366  sincsin 15946  πcpi 15949  citg 24982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230  df-dv 25231
This theorem is referenced by:  wallispi  44301
  Copyright terms: Public domain W3C validator