Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem5 Structured version   Visualization version   GIF version

Theorem wallispilem5 44430
Description: The sequence 𝐻 converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem5.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispilem5.2 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
wallispilem5.3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
wallispilem5.4 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
wallispilem5.5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
Assertion
Ref Expression
wallispilem5 𝐻 ⇝ 1
Distinct variable groups:   𝑘,𝑛,𝑥   𝑥,𝐹   𝑘,𝐺   𝑘,𝐿
Allowed substitution hints:   𝐹(𝑘,𝑛)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑘,𝑛)   𝐼(𝑥,𝑘,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem wallispilem5
StepHypRef Expression
1 wallispilem5.1 . . 3 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
2 wallispilem5.2 . . 3 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
3 wallispilem5.3 . . 3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
4 wallispilem5.4 . . 3 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
51, 2, 3, 4wallispilem4 44429 . 2 𝐺 = 𝐻
6 nnuz 12815 . . . 4 ℕ = (ℤ‘1)
7 1zzd 12543 . . . 4 (⊤ → 1 ∈ ℤ)
8 wallispilem5.5 . . . . 5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
9 2cnd 12240 . . . . 5 (⊤ → 2 ∈ ℂ)
10 2ne0 12266 . . . . . 6 2 ≠ 0
1110a1i 11 . . . . 5 (⊤ → 2 ≠ 0)
12 1cnd 11159 . . . . 5 (⊤ → 1 ∈ ℂ)
138, 9, 11, 12clim1fr1 43962 . . . 4 (⊤ → 𝐿 ⇝ 1)
14 nnex 12168 . . . . . . 7 ℕ ∈ V
1514mptex 7178 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) ∈ V
163, 15eqeltri 2828 . . . . 5 𝐺 ∈ V
1716a1i 11 . . . 4 (⊤ → 𝐺 ∈ V)
18 2nn0 12439 . . . . . . . . . . . 12 2 ∈ ℕ0
1918a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℕ0)
20 nnnn0 12429 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2119, 20nn0mulcld 12487 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ0)
22 1nn0 12438 . . . . . . . . . . 11 1 ∈ ℕ0
2322a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℕ0)
2421, 23nn0addcld 12486 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℕ0)
2524nn0red 12483 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
2621nn0red 12483 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
27 2cnd 12240 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℂ)
28 nncn 12170 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2910a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ≠ 0)
30 nnne0 12196 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3127, 28, 29, 30mulne0d 11816 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ≠ 0)
3225, 26, 31redivcld 11992 . . . . . . 7 (𝑛 ∈ ℕ → (((2 · 𝑛) + 1) / (2 · 𝑛)) ∈ ℝ)
338, 32fmpti 7065 . . . . . 6 𝐿:ℕ⟶ℝ
3433a1i 11 . . . . 5 (⊤ → 𝐿:ℕ⟶ℝ)
3534ffvelcdmda 7040 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐿𝑘) ∈ ℝ)
362wallispilem3 44428 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℕ0 → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3721, 36syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3837rpred 12966 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ)
392wallispilem3 44428 . . . . . . . . 9 (((2 · 𝑛) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4024, 39syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4138, 40rerpdivcld 12997 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) ∈ ℝ)
423, 41fmpti 7065 . . . . . 6 𝐺:ℕ⟶ℝ
4342a1i 11 . . . . 5 (⊤ → 𝐺:ℕ⟶ℝ)
4443ffvelcdmda 7040 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
4518a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
46 nnnn0 12429 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4745, 46nn0mulcld 12487 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ0)
482wallispilem3 44428 . . . . . . . . . 10 ((2 · 𝑘) ∈ ℕ0 → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
4947, 48syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
5049rpred 12966 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ)
51 2nn 12235 . . . . . . . . . . . . 13 2 ∈ ℕ
5251a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℕ)
53 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
5452, 53nnmulcld 12215 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ)
55 nnm1nn0 12463 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
572wallispilem3 44428 . . . . . . . . . 10 (((2 · 𝑘) − 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5856, 57syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5958rpred 12966 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ)
6022a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℕ0)
6147, 60nn0addcld 12486 . . . . . . . . 9 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ0)
622wallispilem3 44428 . . . . . . . . 9 (((2 · 𝑘) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
6361, 62syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
64 2cnd 12240 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
65 nncn 12170 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
6664, 65mulcld 11184 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
67 1cnd 11159 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 1 ∈ ℂ)
6866, 67npcand 11525 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((2 · 𝑘) − 1) + 1) = (2 · 𝑘))
6968fveq2d 6851 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) = (𝐼‘(2 · 𝑘)))
702, 56wallispilem1 44426 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7169, 70eqbrtrrd 5134 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7250, 59, 63, 71lediv1dd 13024 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
7366, 67addcld 11183 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℂ)
7410a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ≠ 0)
75 nnne0 12196 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
7664, 65, 74, 75mulne0d 11816 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ≠ 0)
7773, 66, 76divcld 11940 . . . . . . . . 9 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) ∈ ℂ)
7863rpcnd 12968 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℂ)
7963rpne0d 12971 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≠ 0)
8077, 78, 79divcan4d 11946 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
81 2re 12236 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℝ)
83 nnre 12169 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
8482, 83remulcld 11194 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
85 1red 11165 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 ∈ ℝ)
8684, 85readdcld 11193 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ)
8745nn0ge0d 12485 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 ≤ 2)
88 nnge1 12190 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
8982, 83, 87, 88lemulge11d 12101 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ≤ (2 · 𝑘))
9084ltp1d 12094 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) < ((2 · 𝑘) + 1))
9182, 84, 86, 89, 90lelttrd 11322 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 < ((2 · 𝑘) + 1))
9282, 86, 91ltled 11312 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 2 ≤ ((2 · 𝑘) + 1))
9345nn0zd 12534 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℤ)
9461nn0zd 12534 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℤ)
95 eluz 12786 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑘) + 1) ∈ ℤ) → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9693, 94, 95syl2anc 584 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9792, 96mpbird 256 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ (ℤ‘2))
982, 97itgsinexp 44316 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))))
9966, 67pncand 11522 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
10099oveq1d 7377 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) = ((2 · 𝑘) / ((2 · 𝑘) + 1)))
101 1e2m1 12289 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
102101a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 = (2 − 1))
103102oveq2d 7378 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) = ((2 · 𝑘) − (2 − 1)))
10466, 64, 67subsub3d 11551 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − (2 − 1)) = (((2 · 𝑘) + 1) − 2))
105103, 104eqtr2d 2772 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 2) = ((2 · 𝑘) − 1))
106105fveq2d 6851 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) + 1) − 2)) = (𝐼‘((2 · 𝑘) − 1)))
107100, 106oveq12d 7380 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
10898, 107eqtrd 2771 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
109108oveq2d 7378 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11054peano2nnd 12179 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ)
111110nnne0d 12212 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ≠ 0)
11266, 73, 111divcld 11940 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) / ((2 · 𝑘) + 1)) ∈ ℂ)
11358rpcnd 12968 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℂ)
11477, 112, 113mulassd 11187 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11573, 66, 111, 76divcan6d 11959 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = 1)
116115oveq1d 7377 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (1 · (𝐼‘((2 · 𝑘) − 1))))
117113mullidd 11182 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
118116, 117eqtrd 2771 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
119109, 114, 1183eqtr2d 2777 . . . . . . . . 9 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = (𝐼‘((2 · 𝑘) − 1)))
120119oveq1d 7377 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12180, 120eqtr3d 2773 . . . . . . 7 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12272, 121breqtrrd 5138 . . . . . 6 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ (((2 · 𝑘) + 1) / (2 · 𝑘)))
12349, 63rpdivcld 12983 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+)
124 nfcv 2902 . . . . . . . 8 𝑛𝑘
125 nfmpt1 5218 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
1262, 125nfcxfr 2900 . . . . . . . . . 10 𝑛𝐼
127 nfcv 2902 . . . . . . . . . 10 𝑛(2 · 𝑘)
128126, 127nffv 6857 . . . . . . . . 9 𝑛(𝐼‘(2 · 𝑘))
129 nfcv 2902 . . . . . . . . 9 𝑛 /
130 nfcv 2902 . . . . . . . . . 10 𝑛((2 · 𝑘) + 1)
131126, 130nffv 6857 . . . . . . . . 9 𝑛(𝐼‘((2 · 𝑘) + 1))
132128, 129, 131nfov 7392 . . . . . . . 8 𝑛((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1)))
133 oveq2 7370 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
134133fveq2d 6851 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘(2 · 𝑛)) = (𝐼‘(2 · 𝑘)))
135133fvoveq1d 7384 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘((2 · 𝑛) + 1)) = (𝐼‘((2 · 𝑘) + 1)))
136134, 135oveq12d 7380 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
137124, 132, 136, 3fvmptf 6974 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+) → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
138123, 137mpdan 685 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
1398a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))))
140 simpr 485 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
141140oveq2d 7378 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
142141oveq1d 7377 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
143142, 141oveq12d 7380 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (((2 · 𝑛) + 1) / (2 · 𝑛)) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
144139, 143, 53, 77fvmptd 6960 . . . . . 6 (𝑘 ∈ ℕ → (𝐿𝑘) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
145122, 138, 1443brtr4d 5142 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐿𝑘))
146145adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐿𝑘))
14778, 79dividd 11938 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) = 1)
14863rpred 12966 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ)
1492, 47wallispilem1 44426 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≤ (𝐼‘(2 · 𝑘)))
150148, 50, 63, 149lediv1dd 13024 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
151147, 150eqbrtrrd 5134 . . . . . 6 (𝑘 ∈ ℕ → 1 ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
152151, 138breqtrrd 5138 . . . . 5 (𝑘 ∈ ℕ → 1 ≤ (𝐺𝑘))
153152adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 ≤ (𝐺𝑘))
1546, 7, 13, 17, 35, 44, 146, 153climsqz2 15536 . . 3 (⊤ → 𝐺 ⇝ 1)
155154mptru 1548 . 2 𝐺 ⇝ 1
1565, 155eqbrtrri 5133 1 𝐻 ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2939  Vcvv 3446   class class class wbr 5110  cmpt 5193  wf 6497  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065  cle 11199  cmin 11394   / cdiv 11821  cn 12162  2c2 12217  0cn0 12422  cz 12508  cuz 12772  +crp 12924  (,)cioo 13274  seqcseq 13916  cexp 13977  cli 15378  sincsin 15957  πcpi 15960  citg 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cc 10380  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-symdif 4207  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-ofr 7623  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-dju 9846  df-card 9884  df-acn 9887  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ioo 13278  df-ioc 13279  df-ico 13280  df-icc 13281  df-fz 13435  df-fzo 13578  df-fl 13707  df-mod 13785  df-seq 13917  df-exp 13978  df-fac 14184  df-bc 14213  df-hash 14241  df-shft 14964  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-limsup 15365  df-clim 15382  df-rlim 15383  df-sum 15583  df-ef 15961  df-sin 15963  df-cos 15964  df-pi 15966  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-mulg 18887  df-cntz 19111  df-cmn 19578  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-fbas 20830  df-fg 20831  df-cnfld 20834  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cld 22407  df-ntr 22408  df-cls 22409  df-nei 22486  df-lp 22524  df-perf 22525  df-cn 22615  df-cnp 22616  df-haus 22703  df-cmp 22775  df-tx 22950  df-hmeo 23143  df-fil 23234  df-fm 23326  df-flim 23327  df-flf 23328  df-xms 23710  df-ms 23711  df-tms 23712  df-cncf 24278  df-ovol 24865  df-vol 24866  df-mbf 25020  df-itg1 25021  df-itg2 25022  df-ibl 25023  df-itg 25024  df-0p 25071  df-limc 25267  df-dv 25268
This theorem is referenced by:  wallispi  44431
  Copyright terms: Public domain W3C validator