Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem5 Structured version   Visualization version   GIF version

Theorem wallispilem5 42231
Description: The sequence 𝐻 converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem5.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispilem5.2 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
wallispilem5.3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
wallispilem5.4 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
wallispilem5.5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
Assertion
Ref Expression
wallispilem5 𝐻 ⇝ 1
Distinct variable groups:   𝑘,𝑛,𝑥   𝑥,𝐹   𝑘,𝐺   𝑘,𝐿
Allowed substitution hints:   𝐹(𝑘,𝑛)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑘,𝑛)   𝐼(𝑥,𝑘,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem wallispilem5
StepHypRef Expression
1 wallispilem5.1 . . 3 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
2 wallispilem5.2 . . 3 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
3 wallispilem5.3 . . 3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
4 wallispilem5.4 . . 3 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
51, 2, 3, 4wallispilem4 42230 . 2 𝐺 = 𝐻
6 nnuz 12269 . . . 4 ℕ = (ℤ‘1)
7 1zzd 12001 . . . 4 (⊤ → 1 ∈ ℤ)
8 wallispilem5.5 . . . . 5 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
9 2cnd 11703 . . . . 5 (⊤ → 2 ∈ ℂ)
10 2ne0 11729 . . . . . 6 2 ≠ 0
1110a1i 11 . . . . 5 (⊤ → 2 ≠ 0)
12 1cnd 10624 . . . . 5 (⊤ → 1 ∈ ℂ)
138, 9, 11, 12clim1fr1 41758 . . . 4 (⊤ → 𝐿 ⇝ 1)
14 nnex 11632 . . . . . . 7 ℕ ∈ V
1514mptex 6977 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) ∈ V
163, 15eqeltri 2906 . . . . 5 𝐺 ∈ V
1716a1i 11 . . . 4 (⊤ → 𝐺 ∈ V)
18 2nn0 11902 . . . . . . . . . . . 12 2 ∈ ℕ0
1918a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℕ0)
20 nnnn0 11892 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2119, 20nn0mulcld 11948 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ0)
22 1nn0 11901 . . . . . . . . . . 11 1 ∈ ℕ0
2322a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℕ0)
2421, 23nn0addcld 11947 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℕ0)
2524nn0red 11944 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
2621nn0red 11944 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
27 2cnd 11703 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℂ)
28 nncn 11634 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2910a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ≠ 0)
30 nnne0 11659 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3127, 28, 29, 30mulne0d 11280 . . . . . . . 8 (𝑛 ∈ ℕ → (2 · 𝑛) ≠ 0)
3225, 26, 31redivcld 11456 . . . . . . 7 (𝑛 ∈ ℕ → (((2 · 𝑛) + 1) / (2 · 𝑛)) ∈ ℝ)
338, 32fmpti 6868 . . . . . 6 𝐿:ℕ⟶ℝ
3433a1i 11 . . . . 5 (⊤ → 𝐿:ℕ⟶ℝ)
3534ffvelrnda 6843 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐿𝑘) ∈ ℝ)
362wallispilem3 42229 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℕ0 → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3721, 36syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ+)
3837rpred 12419 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘(2 · 𝑛)) ∈ ℝ)
392wallispilem3 42229 . . . . . . . . 9 (((2 · 𝑛) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4024, 39syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐼‘((2 · 𝑛) + 1)) ∈ ℝ+)
4138, 40rerpdivcld 12450 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) ∈ ℝ)
423, 41fmpti 6868 . . . . . 6 𝐺:ℕ⟶ℝ
4342a1i 11 . . . . 5 (⊤ → 𝐺:ℕ⟶ℝ)
4443ffvelrnda 6843 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
4518a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
46 nnnn0 11892 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4745, 46nn0mulcld 11948 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ0)
482wallispilem3 42229 . . . . . . . . . 10 ((2 · 𝑘) ∈ ℕ0 → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
4947, 48syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ+)
5049rpred 12419 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ∈ ℝ)
51 2nn 11698 . . . . . . . . . . . . 13 2 ∈ ℕ
5251a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℕ)
53 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
5452, 53nnmulcld 11678 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℕ)
55 nnm1nn0 11926 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ0)
572wallispilem3 42229 . . . . . . . . . 10 (((2 · 𝑘) − 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5856, 57syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ+)
5958rpred 12419 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℝ)
6022a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℕ0)
6147, 60nn0addcld 11947 . . . . . . . . 9 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ0)
622wallispilem3 42229 . . . . . . . . 9 (((2 · 𝑘) + 1) ∈ ℕ0 → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
6361, 62syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ+)
64 2cnd 11703 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
65 nncn 11634 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
6664, 65mulcld 10649 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
67 1cnd 10624 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 1 ∈ ℂ)
6866, 67npcand 10989 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((2 · 𝑘) − 1) + 1) = (2 · 𝑘))
6968fveq2d 6667 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) = (𝐼‘(2 · 𝑘)))
702, 56wallispilem1 42227 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) − 1) + 1)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7169, 70eqbrtrrd 5081 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘(2 · 𝑘)) ≤ (𝐼‘((2 · 𝑘) − 1)))
7250, 59, 63, 71lediv1dd 12477 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
7366, 67addcld 10648 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℂ)
7410a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ≠ 0)
75 nnne0 11659 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
7664, 65, 74, 75mulne0d 11280 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2 · 𝑘) ≠ 0)
7773, 66, 76divcld 11404 . . . . . . . . 9 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) ∈ ℂ)
7863rpcnd 12421 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℂ)
7963rpne0d 12424 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≠ 0)
8077, 78, 79divcan4d 11410 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
81 2re 11699 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℝ)
83 nnre 11633 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
8482, 83remulcld 10659 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
85 1red 10630 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 ∈ ℝ)
8684, 85readdcld 10658 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ)
8745nn0ge0d 11946 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 ≤ 2)
88 nnge1 11653 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
8982, 83, 87, 88lemulge11d 11565 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ≤ (2 · 𝑘))
9084ltp1d 11558 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (2 · 𝑘) < ((2 · 𝑘) + 1))
9182, 84, 86, 89, 90lelttrd 10786 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 < ((2 · 𝑘) + 1))
9282, 86, 91ltled 10776 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 2 ≤ ((2 · 𝑘) + 1))
9345nn0zd 12073 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 2 ∈ ℤ)
9461nn0zd 12073 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℤ)
95 eluz 12245 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((2 · 𝑘) + 1) ∈ ℤ) → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9693, 94, 95syl2anc 584 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) ∈ (ℤ‘2) ↔ 2 ≤ ((2 · 𝑘) + 1)))
9792, 96mpbird 258 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ (ℤ‘2))
982, 97itgsinexp 42116 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))))
9966, 67pncand 10986 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
10099oveq1d 7160 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) = ((2 · 𝑘) / ((2 · 𝑘) + 1)))
101 1e2m1 11752 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
102101a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 1 = (2 − 1))
103102oveq2d 7161 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) = ((2 · 𝑘) − (2 − 1)))
10466, 64, 67subsub3d 11015 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((2 · 𝑘) − (2 − 1)) = (((2 · 𝑘) + 1) − 2))
105103, 104eqtr2d 2854 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) − 2) = ((2 · 𝑘) − 1))
106105fveq2d 6667 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐼‘(((2 · 𝑘) + 1) − 2)) = (𝐼‘((2 · 𝑘) − 1)))
107100, 106oveq12d 7163 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) − 1) / ((2 · 𝑘) + 1)) · (𝐼‘(((2 · 𝑘) + 1) − 2))) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
10898, 107eqtrd 2853 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) = (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1))))
109108oveq2d 7161 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11054peano2nnd 11643 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℕ)
111110nnne0d 11675 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ≠ 0)
11266, 73, 111divcld 11404 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) / ((2 · 𝑘) + 1)) ∈ ℂ)
11358rpcnd 12421 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) − 1)) ∈ ℂ)
11477, 112, 113mulassd 10652 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (((2 · 𝑘) / ((2 · 𝑘) + 1)) · (𝐼‘((2 · 𝑘) − 1)))))
11573, 66, 111, 76divcan6d 11423 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = 1)
116115oveq1d 7160 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (1 · (𝐼‘((2 · 𝑘) − 1))))
117113mulid2d 10647 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
118116, 117eqtrd 2853 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) · (𝐼‘((2 · 𝑘) − 1))) = (𝐼‘((2 · 𝑘) − 1)))
119109, 114, 1183eqtr2d 2859 . . . . . . . . 9 (𝑘 ∈ ℕ → ((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) = (𝐼‘((2 · 𝑘) − 1)))
120119oveq1d 7160 . . . . . . . 8 (𝑘 ∈ ℕ → (((((2 · 𝑘) + 1) / (2 · 𝑘)) · (𝐼‘((2 · 𝑘) + 1))) / (𝐼‘((2 · 𝑘) + 1))) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12180, 120eqtr3d 2855 . . . . . . 7 (𝑘 ∈ ℕ → (((2 · 𝑘) + 1) / (2 · 𝑘)) = ((𝐼‘((2 · 𝑘) − 1)) / (𝐼‘((2 · 𝑘) + 1))))
12272, 121breqtrrd 5085 . . . . . 6 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ≤ (((2 · 𝑘) + 1) / (2 · 𝑘)))
12349, 63rpdivcld 12436 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+)
124 nfcv 2974 . . . . . . . 8 𝑛𝑘
125 nfmpt1 5155 . . . . . . . . . . 11 𝑛(𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
1262, 125nfcxfr 2972 . . . . . . . . . 10 𝑛𝐼
127 nfcv 2974 . . . . . . . . . 10 𝑛(2 · 𝑘)
128126, 127nffv 6673 . . . . . . . . 9 𝑛(𝐼‘(2 · 𝑘))
129 nfcv 2974 . . . . . . . . 9 𝑛 /
130 nfcv 2974 . . . . . . . . . 10 𝑛((2 · 𝑘) + 1)
131126, 130nffv 6673 . . . . . . . . 9 𝑛(𝐼‘((2 · 𝑘) + 1))
132128, 129, 131nfov 7175 . . . . . . . 8 𝑛((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1)))
133 oveq2 7153 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
134133fveq2d 6667 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘(2 · 𝑛)) = (𝐼‘(2 · 𝑘)))
135133fvoveq1d 7167 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐼‘((2 · 𝑛) + 1)) = (𝐼‘((2 · 𝑘) + 1)))
136134, 135oveq12d 7163 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
137124, 132, 136, 3fvmptf 6781 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))) ∈ ℝ+) → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
138123, 137mpdan 683 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
1398a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))))
140 simpr 485 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
141140oveq2d 7161 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
142141oveq1d 7160 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
143142, 141oveq12d 7163 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (((2 · 𝑛) + 1) / (2 · 𝑛)) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
144139, 143, 53, 77fvmptd 6767 . . . . . 6 (𝑘 ∈ ℕ → (𝐿𝑘) = (((2 · 𝑘) + 1) / (2 · 𝑘)))
145122, 138, 1443brtr4d 5089 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐿𝑘))
146145adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐿𝑘))
14778, 79dividd 11402 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) = 1)
14863rpred 12419 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ∈ ℝ)
1492, 47wallispilem1 42227 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐼‘((2 · 𝑘) + 1)) ≤ (𝐼‘(2 · 𝑘)))
150148, 50, 63, 149lediv1dd 12477 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐼‘((2 · 𝑘) + 1)) / (𝐼‘((2 · 𝑘) + 1))) ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
151147, 150eqbrtrrd 5081 . . . . . 6 (𝑘 ∈ ℕ → 1 ≤ ((𝐼‘(2 · 𝑘)) / (𝐼‘((2 · 𝑘) + 1))))
152151, 138breqtrrd 5085 . . . . 5 (𝑘 ∈ ℕ → 1 ≤ (𝐺𝑘))
153152adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 ≤ (𝐺𝑘))
1546, 7, 13, 17, 35, 44, 146, 153climsqz2 14986 . . 3 (⊤ → 𝐺 ⇝ 1)
155154mptru 1535 . 2 𝐺 ⇝ 1
1565, 155eqbrtrri 5080 1 𝐻 ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wtru 1529  wcel 2105  wne 3013  Vcvv 3492   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cle 10664  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  (,)cioo 12726  seqcseq 13357  cexp 13417  cli 14829  sincsin 15405  πcpi 15408  citg 24146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-symdif 4216  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-ovol 23992  df-vol 23993  df-mbf 24147  df-itg1 24148  df-itg2 24149  df-ibl 24150  df-itg 24151  df-0p 24198  df-limc 24391  df-dv 24392
This theorem is referenced by:  wallispi  42232
  Copyright terms: Public domain W3C validator