| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsvalstr | Structured version Visualization version GIF version | ||
| Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| prdsvalstr | ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 4138 | . 2 ⊢ ((({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}) = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) | |
| 2 | eqid 2730 | . . . 4 ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) | |
| 3 | 2 | imasvalstr 17421 | . . 3 ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) Struct 〈1, ;12〉 |
| 4 | 1nn0 12465 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 5 | 4nn 12276 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 6 | 4, 5 | decnncl 12676 | . . . 4 ⊢ ;14 ∈ ℕ |
| 7 | homndx 17381 | . . . 4 ⊢ (Hom ‘ndx) = ;14 | |
| 8 | 4nn0 12468 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 9 | 5nn 12279 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 10 | 4lt5 12365 | . . . . 5 ⊢ 4 < 5 | |
| 11 | 4, 8, 9, 10 | declt 12684 | . . . 4 ⊢ ;14 < ;15 |
| 12 | 4, 9 | decnncl 12676 | . . . 4 ⊢ ;15 ∈ ℕ |
| 13 | ccondx 17383 | . . . 4 ⊢ (comp‘ndx) = ;15 | |
| 14 | 6, 7, 11, 12, 13 | strle2 17136 | . . 3 ⊢ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉} Struct 〈;14, ;15〉 |
| 15 | 2nn0 12466 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 16 | 2lt4 12363 | . . . 4 ⊢ 2 < 4 | |
| 17 | 4, 15, 5, 16 | declt 12684 | . . 3 ⊢ ;12 < ;14 |
| 18 | 3, 14, 17 | strleun 17134 | . 2 ⊢ ((({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}) Struct 〈1, ;15〉 |
| 19 | 1, 18 | eqbrtrri 5133 | 1 ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 {cpr 4594 {ctp 4596 〈cop 4598 class class class wbr 5110 ‘cfv 6514 1c1 11076 2c2 12248 4c4 12250 5c5 12251 ;cdc 12656 Struct cstr 17123 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 ·𝑖cip 17232 TopSetcts 17233 lecple 17234 distcds 17236 Hom chom 17238 compcco 17239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 |
| This theorem is referenced by: prdsbaslem 17423 |
| Copyright terms: Public domain | W3C validator |