Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | breq1i 5082 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
4 | 1, 3 | mpbir 230 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 |
This theorem is referenced by: eqbrtrri 5098 3brtr4i 5105 infxpenc2 9787 dju1p1e2 9938 pwsdompw 9969 r1om 10009 aleph1 10336 canthp1lem1 10417 neg1lt0 12099 halflt1 12200 3halfnz 12408 declei 12482 numlti 12483 sqlecan 13934 discr 13964 faclbnd3 14015 hashunlei 14149 hashge2el2dif 14203 geo2lim 15596 0.999... 15602 geoihalfsum 15603 cos2bnd 15906 sin4lt0 15913 eirrlem 15922 rpnnen2lem3 15934 rpnnen2lem9 15940 aleph1re 15963 1nprm 16393 strle2 16869 strle3 16870 1strstr 16936 1strstr1 16937 2strstr 16943 2strstr1 16946 rngstr 17017 srngstr 17028 lmodstr 17044 ipsstr 17055 phlstr 17065 topgrpstr 17080 otpsstr 17095 odrngstr 17122 imasvalstr 17171 0frgp 19394 cnfldstr 20608 zlmlemOLD 20728 tnglemOLD 23806 iscmet3lem3 24463 mbfimaopnlem 24828 mbfsup 24837 mbfi1fseqlem6 24894 aalioulem3 25503 aaliou3lem3 25513 dvradcnv 25589 asin1 26053 log2cnv 26103 log2tlbnd 26104 mule1 26306 bposlem5 26445 bposlem8 26448 zabsle1 26453 trkgstr 26814 0pth 28498 ex-fl 28820 blocnilem 29175 norm3difi 29518 norm3adifii 29519 bcsiALT 29550 nmopsetn0 30236 nmfnsetn0 30249 nmopge0 30282 nmfnge0 30298 0bdop 30364 nmcexi 30397 opsqrlem6 30516 dp2lt10 31167 dplti 31188 dpmul4 31197 idlsrgstr 31656 locfinref 31800 dya2iocct 32256 signswch 32549 hgt750lem 32640 hgt750lem2 32641 subfaclim 33159 logi 33709 faclim 33721 cnndvlem1 34726 taupilem2 35502 cntotbnd 35963 60gcd7e1 40020 3lexlogpow5ineq1 40069 aks4d1p1p7 40089 acos1half 40177 diophren 40642 algstr 41009 pr2dom 41141 tr3dom 41142 binomcxplemnn0 41974 binomcxplemrat 41975 stirlinglem1 43622 dirkercncflem1 43651 fouriersw 43779 meaiunlelem 44013 nfermltl2rev 45206 evengpoap3 45262 exple2lt6 45711 nnlog2ge0lt1 45923 |
Copyright terms: Public domain | W3C validator |