| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | breq1i 5098 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 class class class wbr 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 |
| This theorem is referenced by: eqbrtrri 5114 3brtr4i 5121 0sdom1dom 9130 1sdom2dom 9138 infxpenc2 9913 dju1p1e2 10065 pwsdompw 10094 r1om 10134 aleph1 10462 canthp1lem1 10543 halflt1 12338 3halfnz 12552 declei 12624 numlti 12625 sqlecan 14116 discr 14147 faclbnd3 14199 hashunlei 14332 hashge2el2dif 14387 geo2lim 15782 0.999... 15788 geoihalfsum 15789 cos2bnd 16097 sin4lt0 16104 eirrlem 16113 rpnnen2lem3 16125 rpnnen2lem9 16131 aleph1re 16154 1nprm 16590 strle2 17070 strle3 17071 1strstr 17134 2strstr 17138 rngstr 17202 srngstr 17213 lmodstr 17229 ipsstr 17240 phlstr 17250 topgrpstr 17265 otpsstr 17280 odrngstr 17307 imasvalstr 17355 chnub 18528 0frgp 19692 cnfldstr 21294 cnfldstrOLD 21309 iscmet3lem3 25218 mbfimaopnlem 25584 mbfsup 25593 mbfi1fseqlem6 25649 aalioulem3 26270 aaliou3lem3 26280 dvradcnv 26358 logi 26524 asin1 26832 log2cnv 26882 log2tlbnd 26883 mule1 27086 bposlem5 27227 bposlem8 27230 zabsle1 27235 trkgstr 28423 0pth 30103 ex-fl 30425 blocnilem 30782 norm3difi 31125 norm3adifii 31126 bcsiALT 31157 nmopsetn0 31843 nmfnsetn0 31856 nmopge0 31889 nmfnge0 31905 0bdop 31971 nmcexi 32004 opsqrlem6 32123 dp2lt10 32862 dplti 32883 dpmul4 32892 idlsrgstr 33465 locfinref 33852 dya2iocct 34291 signswch 34572 hgt750lem 34662 hgt750lem2 34663 subfaclim 35230 faclim 35788 cnndvlem1 36577 taupilem2 37362 cntotbnd 37842 60gcd7e1 42044 3lexlogpow5ineq1 42093 aks4d1p1p7 42113 acos1half 42397 diophren 42852 algstr 43212 pr2dom 43566 tr3dom 43567 binomcxplemnn0 44388 binomcxplemrat 44389 stirlinglem1 46118 dirkercncflem1 46147 fouriersw 46275 meaiunlelem 46512 ceilhalf1 47371 nfermltl2rev 47780 evengpoap3 47836 exple2lt6 48401 nnlog2ge0lt1 48604 catbas 49264 cathomfval 49265 catcofval 49266 |
| Copyright terms: Public domain | W3C validator |