| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | breq1i 5114 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: eqbrtrri 5130 3brtr4i 5137 0sdom1dom 9185 1sdom2dom 9194 infxpenc2 9975 dju1p1e2 10127 pwsdompw 10156 r1om 10196 aleph1 10524 canthp1lem1 10605 halflt1 12399 3halfnz 12613 declei 12685 numlti 12686 sqlecan 14174 discr 14205 faclbnd3 14257 hashunlei 14390 hashge2el2dif 14445 geo2lim 15841 0.999... 15847 geoihalfsum 15848 cos2bnd 16156 sin4lt0 16163 eirrlem 16172 rpnnen2lem3 16184 rpnnen2lem9 16190 aleph1re 16213 1nprm 16649 strle2 17129 strle3 17130 1strstr 17193 2strstr 17197 rngstr 17261 srngstr 17272 lmodstr 17288 ipsstr 17299 phlstr 17309 topgrpstr 17324 otpsstr 17339 odrngstr 17366 imasvalstr 17414 0frgp 19709 cnfldstr 21266 cnfldstrOLD 21281 iscmet3lem3 25190 mbfimaopnlem 25556 mbfsup 25565 mbfi1fseqlem6 25621 aalioulem3 26242 aaliou3lem3 26252 dvradcnv 26330 logi 26496 asin1 26804 log2cnv 26854 log2tlbnd 26855 mule1 27058 bposlem5 27199 bposlem8 27202 zabsle1 27207 trkgstr 28371 0pth 30054 ex-fl 30376 blocnilem 30733 norm3difi 31076 norm3adifii 31077 bcsiALT 31108 nmopsetn0 31794 nmfnsetn0 31807 nmopge0 31840 nmfnge0 31856 0bdop 31922 nmcexi 31955 opsqrlem6 32074 dp2lt10 32804 dplti 32825 dpmul4 32834 chnub 32938 idlsrgstr 33473 locfinref 33831 dya2iocct 34271 signswch 34552 hgt750lem 34642 hgt750lem2 34643 subfaclim 35175 faclim 35733 cnndvlem1 36525 taupilem2 37310 cntotbnd 37790 60gcd7e1 41993 3lexlogpow5ineq1 42042 aks4d1p1p7 42062 acos1half 42346 diophren 42801 algstr 43162 pr2dom 43516 tr3dom 43517 binomcxplemnn0 44338 binomcxplemrat 44339 stirlinglem1 46072 dirkercncflem1 46101 fouriersw 46229 meaiunlelem 46466 ceilhalf1 47335 nfermltl2rev 47744 evengpoap3 47800 exple2lt6 48352 nnlog2ge0lt1 48555 catbas 49215 cathomfval 49216 catcofval 49217 |
| Copyright terms: Public domain | W3C validator |