| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | breq1i 5102 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 |
| This theorem is referenced by: eqbrtrri 5118 3brtr4i 5125 0sdom1dom 9145 1sdom2dom 9153 infxpenc2 9935 dju1p1e2 10087 pwsdompw 10116 r1om 10156 aleph1 10484 canthp1lem1 10565 halflt1 12359 3halfnz 12573 declei 12645 numlti 12646 sqlecan 14134 discr 14165 faclbnd3 14217 hashunlei 14350 hashge2el2dif 14405 geo2lim 15800 0.999... 15806 geoihalfsum 15807 cos2bnd 16115 sin4lt0 16122 eirrlem 16131 rpnnen2lem3 16143 rpnnen2lem9 16149 aleph1re 16172 1nprm 16608 strle2 17088 strle3 17089 1strstr 17152 2strstr 17156 rngstr 17220 srngstr 17231 lmodstr 17247 ipsstr 17258 phlstr 17268 topgrpstr 17283 otpsstr 17298 odrngstr 17325 imasvalstr 17373 0frgp 19676 cnfldstr 21281 cnfldstrOLD 21296 iscmet3lem3 25206 mbfimaopnlem 25572 mbfsup 25581 mbfi1fseqlem6 25637 aalioulem3 26258 aaliou3lem3 26268 dvradcnv 26346 logi 26512 asin1 26820 log2cnv 26870 log2tlbnd 26871 mule1 27074 bposlem5 27215 bposlem8 27218 zabsle1 27223 trkgstr 28407 0pth 30087 ex-fl 30409 blocnilem 30766 norm3difi 31109 norm3adifii 31110 bcsiALT 31141 nmopsetn0 31827 nmfnsetn0 31840 nmopge0 31873 nmfnge0 31889 0bdop 31955 nmcexi 31988 opsqrlem6 32107 dp2lt10 32837 dplti 32858 dpmul4 32867 chnub 32967 idlsrgstr 33452 locfinref 33810 dya2iocct 34250 signswch 34531 hgt750lem 34621 hgt750lem2 34622 subfaclim 35163 faclim 35721 cnndvlem1 36513 taupilem2 37298 cntotbnd 37778 60gcd7e1 41981 3lexlogpow5ineq1 42030 aks4d1p1p7 42050 acos1half 42334 diophren 42789 algstr 43149 pr2dom 43503 tr3dom 43504 binomcxplemnn0 44325 binomcxplemrat 44326 stirlinglem1 46059 dirkercncflem1 46088 fouriersw 46216 meaiunlelem 46453 ceilhalf1 47322 nfermltl2rev 47731 evengpoap3 47787 exple2lt6 48352 nnlog2ge0lt1 48555 catbas 49215 cathomfval 49216 catcofval 49217 |
| Copyright terms: Public domain | W3C validator |