Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | breq1i 5077 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
4 | 1, 3 | mpbir 230 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: eqbrtrri 5093 3brtr4i 5100 infxpenc2 9709 dju1p1e2 9860 pwsdompw 9891 r1om 9931 aleph1 10258 canthp1lem1 10339 neg1lt0 12020 halflt1 12121 3halfnz 12329 declei 12402 numlti 12403 sqlecan 13853 discr 13883 faclbnd3 13934 hashunlei 14068 hashge2el2dif 14122 geo2lim 15515 0.999... 15521 geoihalfsum 15522 cos2bnd 15825 sin4lt0 15832 eirrlem 15841 rpnnen2lem3 15853 rpnnen2lem9 15859 aleph1re 15882 1nprm 16312 strle2 16788 strle3 16789 1strstr 16855 2strstr 16860 2strstr1 16863 rngstr 16934 srngstr 16945 lmodstr 16961 ipsstr 16971 phlstr 16981 topgrpstr 16995 otpsstr 17009 odrngstr 17032 imasvalstr 17079 0frgp 19300 cnfldstr 20512 zlmlemOLD 20631 tnglemOLD 23703 iscmet3lem3 24359 mbfimaopnlem 24724 mbfsup 24733 mbfi1fseqlem6 24790 aalioulem3 25399 aaliou3lem3 25409 dvradcnv 25485 asin1 25949 log2cnv 25999 log2tlbnd 26000 mule1 26202 bposlem5 26341 bposlem8 26344 zabsle1 26349 trkgstr 26709 0pth 28390 ex-fl 28712 blocnilem 29067 norm3difi 29410 norm3adifii 29411 bcsiALT 29442 nmopsetn0 30128 nmfnsetn0 30141 nmopge0 30174 nmfnge0 30190 0bdop 30256 nmcexi 30289 opsqrlem6 30408 dp2lt10 31060 dplti 31081 dpmul4 31090 idlsrgstr 31549 locfinref 31693 dya2iocct 32147 signswch 32440 hgt750lem 32531 hgt750lem2 32532 subfaclim 33050 logi 33606 faclim 33618 cnndvlem1 34644 taupilem2 35420 cntotbnd 35881 60gcd7e1 39941 3lexlogpow5ineq1 39990 aks4d1p1p7 40010 acos1half 40098 diophren 40551 algstr 40918 pr2dom 41032 tr3dom 41033 binomcxplemnn0 41856 binomcxplemrat 41857 stirlinglem1 43505 dirkercncflem1 43534 fouriersw 43662 meaiunlelem 43896 nfermltl2rev 45083 evengpoap3 45139 exple2lt6 45588 nnlog2ge0lt1 45800 |
Copyright terms: Public domain | W3C validator |