| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | breq1i 5131 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: eqbrtrri 5147 3brtr4i 5154 0sdom1dom 9251 1sdom2dom 9260 infxpenc2 10041 dju1p1e2 10193 pwsdompw 10222 r1om 10262 aleph1 10590 canthp1lem1 10671 neg1lt0 12362 halflt1 12463 3halfnz 12677 declei 12749 numlti 12750 sqlecan 14232 discr 14263 faclbnd3 14315 hashunlei 14448 hashge2el2dif 14503 geo2lim 15896 0.999... 15902 geoihalfsum 15903 cos2bnd 16211 sin4lt0 16218 eirrlem 16227 rpnnen2lem3 16239 rpnnen2lem9 16245 aleph1re 16268 1nprm 16703 strle2 17183 strle3 17184 1strstr 17247 1strstr1 17248 2strstr 17253 rngstr 17317 srngstr 17328 lmodstr 17344 ipsstr 17355 phlstr 17365 topgrpstr 17380 otpsstr 17395 odrngstr 17422 imasvalstr 17470 0frgp 19765 cnfldstr 21322 cnfldstrOLD 21337 iscmet3lem3 25247 mbfimaopnlem 25613 mbfsup 25622 mbfi1fseqlem6 25678 aalioulem3 26299 aaliou3lem3 26309 dvradcnv 26387 logi 26553 asin1 26861 log2cnv 26911 log2tlbnd 26912 mule1 27115 bposlem5 27256 bposlem8 27259 zabsle1 27264 trkgstr 28428 0pth 30111 ex-fl 30433 blocnilem 30790 norm3difi 31133 norm3adifii 31134 bcsiALT 31165 nmopsetn0 31851 nmfnsetn0 31864 nmopge0 31897 nmfnge0 31913 0bdop 31979 nmcexi 32012 opsqrlem6 32131 dp2lt10 32863 dplti 32884 dpmul4 32893 chnub 32997 idlsrgstr 33522 locfinref 33877 dya2iocct 34317 signswch 34598 hgt750lem 34688 hgt750lem2 34689 subfaclim 35215 faclim 35768 cnndvlem1 36560 taupilem2 37345 cntotbnd 37825 60gcd7e1 42023 3lexlogpow5ineq1 42072 aks4d1p1p7 42092 acos1half 42376 diophren 42811 algstr 43172 pr2dom 43526 tr3dom 43527 binomcxplemnn0 44348 binomcxplemrat 44349 stirlinglem1 46083 dirkercncflem1 46112 fouriersw 46240 meaiunlelem 46477 ceilhalf1 47343 nfermltl2rev 47737 evengpoap3 47793 exple2lt6 48319 nnlog2ge0lt1 48526 catbas 49126 cathomfval 49127 catcofval 49128 |
| Copyright terms: Public domain | W3C validator |