![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | breq1i 5155 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 |
This theorem is referenced by: eqbrtrri 5171 3brtr4i 5178 0sdom1dom 9272 1sdom2dom 9281 infxpenc2 10060 dju1p1e2 10212 pwsdompw 10241 r1om 10281 aleph1 10609 canthp1lem1 10690 neg1lt0 12381 halflt1 12482 3halfnz 12695 declei 12767 numlti 12768 sqlecan 14245 discr 14276 faclbnd3 14328 hashunlei 14461 hashge2el2dif 14516 geo2lim 15908 0.999... 15914 geoihalfsum 15915 cos2bnd 16221 sin4lt0 16228 eirrlem 16237 rpnnen2lem3 16249 rpnnen2lem9 16255 aleph1re 16278 1nprm 16713 strle2 17193 strle3 17194 1strstr 17260 1strstr1 17261 2strstr 17267 2strstr1 17270 rngstr 17344 srngstr 17355 lmodstr 17371 ipsstr 17382 phlstr 17392 topgrpstr 17407 otpsstr 17422 odrngstr 17449 imasvalstr 17498 0frgp 19812 cnfldstr 21384 cnfldstrOLD 21399 zlmlemOLD 21546 tnglemOLD 24670 iscmet3lem3 25338 mbfimaopnlem 25704 mbfsup 25713 mbfi1fseqlem6 25770 aalioulem3 26391 aaliou3lem3 26401 dvradcnv 26479 logi 26644 asin1 26952 log2cnv 27002 log2tlbnd 27003 mule1 27206 bposlem5 27347 bposlem8 27350 zabsle1 27355 trkgstr 28467 0pth 30154 ex-fl 30476 blocnilem 30833 norm3difi 31176 norm3adifii 31177 bcsiALT 31208 nmopsetn0 31894 nmfnsetn0 31907 nmopge0 31940 nmfnge0 31956 0bdop 32022 nmcexi 32055 opsqrlem6 32174 dp2lt10 32851 dplti 32872 dpmul4 32881 chnub 32986 idlsrgstr 33510 locfinref 33802 dya2iocct 34262 signswch 34555 hgt750lem 34645 hgt750lem2 34646 subfaclim 35173 faclim 35726 cnndvlem1 36520 taupilem2 37305 cntotbnd 37783 60gcd7e1 41987 3lexlogpow5ineq1 42036 aks4d1p1p7 42056 acos1half 42367 diophren 42801 algstr 43162 pr2dom 43517 tr3dom 43518 binomcxplemnn0 44345 binomcxplemrat 44346 stirlinglem1 46030 dirkercncflem1 46059 fouriersw 46187 meaiunlelem 46424 nfermltl2rev 47668 evengpoap3 47724 exple2lt6 48209 nnlog2ge0lt1 48416 |
Copyright terms: Public domain | W3C validator |