| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | breq1i 5102 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 |
| This theorem is referenced by: eqbrtrri 5118 3brtr4i 5125 0sdom1dom 9139 1sdom2dom 9147 infxpenc2 9922 dju1p1e2 10074 pwsdompw 10103 r1om 10143 aleph1 10471 canthp1lem1 10552 halflt1 12347 3halfnz 12560 declei 12632 numlti 12633 sqlecan 14120 discr 14151 faclbnd3 14203 hashunlei 14336 hashge2el2dif 14391 geo2lim 15786 0.999... 15792 geoihalfsum 15793 cos2bnd 16101 sin4lt0 16108 eirrlem 16117 rpnnen2lem3 16129 rpnnen2lem9 16135 aleph1re 16158 1nprm 16594 strle2 17074 strle3 17075 1strstr 17138 2strstr 17142 rngstr 17206 srngstr 17217 lmodstr 17233 ipsstr 17244 phlstr 17254 topgrpstr 17269 otpsstr 17284 odrngstr 17311 imasvalstr 17359 chnub 18532 0frgp 19695 cnfldstr 21297 cnfldstrOLD 21312 iscmet3lem3 25220 mbfimaopnlem 25586 mbfsup 25595 mbfi1fseqlem6 25651 aalioulem3 26272 aaliou3lem3 26282 dvradcnv 26360 logi 26526 asin1 26834 log2cnv 26884 log2tlbnd 26885 mule1 27088 bposlem5 27229 bposlem8 27232 zabsle1 27237 trkgstr 28425 0pth 30109 ex-fl 30431 blocnilem 30788 norm3difi 31131 norm3adifii 31132 bcsiALT 31163 nmopsetn0 31849 nmfnsetn0 31862 nmopge0 31895 nmfnge0 31911 0bdop 31977 nmcexi 32010 opsqrlem6 32129 dp2lt10 32873 dplti 32894 dpmul4 32903 idlsrgstr 33476 locfinref 33877 dya2iocct 34316 signswch 34597 hgt750lem 34687 hgt750lem2 34688 subfaclim 35255 faclim 35813 cnndvlem1 36604 taupilem2 37389 cntotbnd 37859 60gcd7e1 42121 3lexlogpow5ineq1 42170 aks4d1p1p7 42190 acos1half 42479 diophren 42933 algstr 43293 pr2dom 43647 tr3dom 43648 binomcxplemnn0 44469 binomcxplemrat 44470 stirlinglem1 46199 dirkercncflem1 46228 fouriersw 46356 meaiunlelem 46593 nthrucw 47011 ceilhalf1 47461 nfermltl2rev 47870 evengpoap3 47926 exple2lt6 48491 nnlog2ge0lt1 48694 catbas 49354 cathomfval 49355 catcofval 49356 |
| Copyright terms: Public domain | W3C validator |