| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | breq1i 5149 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 class class class wbr 5142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 |
| This theorem is referenced by: eqbrtrri 5165 3brtr4i 5172 0sdom1dom 9275 1sdom2dom 9284 infxpenc2 10063 dju1p1e2 10215 pwsdompw 10244 r1om 10284 aleph1 10612 canthp1lem1 10693 neg1lt0 12384 halflt1 12485 3halfnz 12699 declei 12771 numlti 12772 sqlecan 14249 discr 14280 faclbnd3 14332 hashunlei 14465 hashge2el2dif 14520 geo2lim 15912 0.999... 15918 geoihalfsum 15919 cos2bnd 16225 sin4lt0 16232 eirrlem 16241 rpnnen2lem3 16253 rpnnen2lem9 16259 aleph1re 16282 1nprm 16717 strle2 17197 strle3 17198 1strstr 17262 1strstr1 17263 2strstr 17268 2strstr1 17271 rngstr 17343 srngstr 17354 lmodstr 17370 ipsstr 17381 phlstr 17391 topgrpstr 17406 otpsstr 17421 odrngstr 17448 imasvalstr 17497 0frgp 19798 cnfldstr 21367 cnfldstrOLD 21382 zlmlemOLD 21529 tnglemOLD 24655 iscmet3lem3 25325 mbfimaopnlem 25691 mbfsup 25700 mbfi1fseqlem6 25756 aalioulem3 26377 aaliou3lem3 26387 dvradcnv 26465 logi 26630 asin1 26938 log2cnv 26988 log2tlbnd 26989 mule1 27192 bposlem5 27333 bposlem8 27336 zabsle1 27341 trkgstr 28453 0pth 30145 ex-fl 30467 blocnilem 30824 norm3difi 31167 norm3adifii 31168 bcsiALT 31199 nmopsetn0 31885 nmfnsetn0 31898 nmopge0 31931 nmfnge0 31947 0bdop 32013 nmcexi 32046 opsqrlem6 32165 dp2lt10 32867 dplti 32888 dpmul4 32897 chnub 33003 idlsrgstr 33531 locfinref 33841 dya2iocct 34283 signswch 34577 hgt750lem 34667 hgt750lem2 34668 subfaclim 35194 faclim 35747 cnndvlem1 36539 taupilem2 37324 cntotbnd 37804 60gcd7e1 42007 3lexlogpow5ineq1 42056 aks4d1p1p7 42076 acos1half 42393 diophren 42829 algstr 43190 pr2dom 43545 tr3dom 43546 binomcxplemnn0 44373 binomcxplemrat 44374 stirlinglem1 46094 dirkercncflem1 46123 fouriersw 46251 meaiunlelem 46488 nfermltl2rev 47735 evengpoap3 47791 exple2lt6 48285 nnlog2ge0lt1 48492 |
| Copyright terms: Public domain | W3C validator |