![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | breq1i 5173 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
4 | 1, 3 | mpbir 231 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: eqbrtrri 5189 3brtr4i 5196 0sdom1dom 9301 1sdom2dom 9310 infxpenc2 10091 dju1p1e2 10243 pwsdompw 10272 r1om 10312 aleph1 10640 canthp1lem1 10721 neg1lt0 12410 halflt1 12511 3halfnz 12722 declei 12794 numlti 12795 sqlecan 14258 discr 14289 faclbnd3 14341 hashunlei 14474 hashge2el2dif 14529 geo2lim 15923 0.999... 15929 geoihalfsum 15930 cos2bnd 16236 sin4lt0 16243 eirrlem 16252 rpnnen2lem3 16264 rpnnen2lem9 16270 aleph1re 16293 1nprm 16726 strle2 17206 strle3 17207 1strstr 17273 1strstr1 17274 2strstr 17280 2strstr1 17283 rngstr 17357 srngstr 17368 lmodstr 17384 ipsstr 17395 phlstr 17405 topgrpstr 17420 otpsstr 17435 odrngstr 17462 imasvalstr 17511 0frgp 19821 cnfldstr 21389 cnfldstrOLD 21404 zlmlemOLD 21551 tnglemOLD 24675 iscmet3lem3 25343 mbfimaopnlem 25709 mbfsup 25718 mbfi1fseqlem6 25775 aalioulem3 26394 aaliou3lem3 26404 dvradcnv 26482 logi 26647 asin1 26955 log2cnv 27005 log2tlbnd 27006 mule1 27209 bposlem5 27350 bposlem8 27353 zabsle1 27358 trkgstr 28470 0pth 30157 ex-fl 30479 blocnilem 30836 norm3difi 31179 norm3adifii 31180 bcsiALT 31211 nmopsetn0 31897 nmfnsetn0 31910 nmopge0 31943 nmfnge0 31959 0bdop 32025 nmcexi 32058 opsqrlem6 32177 dp2lt10 32848 dplti 32869 dpmul4 32878 chnub 32984 idlsrgstr 33495 locfinref 33787 dya2iocct 34245 signswch 34538 hgt750lem 34628 hgt750lem2 34629 subfaclim 35156 faclim 35708 cnndvlem1 36503 taupilem2 37288 cntotbnd 37756 60gcd7e1 41962 3lexlogpow5ineq1 42011 aks4d1p1p7 42031 acos1half 42340 diophren 42769 algstr 43134 pr2dom 43489 tr3dom 43490 binomcxplemnn0 44318 binomcxplemrat 44319 stirlinglem1 45995 dirkercncflem1 46024 fouriersw 46152 meaiunlelem 46389 nfermltl2rev 47617 evengpoap3 47673 exple2lt6 48089 nnlog2ge0lt1 48300 |
Copyright terms: Public domain | W3C validator |