![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atan1 | Structured version Visualization version GIF version |
Description: The arctangent of 1 is π / 4. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
atan1 | ⊢ (arctan‘1) = (π / 4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tan4thpi 26571 | . . 3 ⊢ (tan‘(π / 4)) = 1 | |
2 | 1 | fveq2i 6910 | . 2 ⊢ (arctan‘(tan‘(π / 4))) = (arctan‘1) |
3 | pire 26515 | . . . . 5 ⊢ π ∈ ℝ | |
4 | 4nn 12347 | . . . . 5 ⊢ 4 ∈ ℕ | |
5 | nndivre 12305 | . . . . 5 ⊢ ((π ∈ ℝ ∧ 4 ∈ ℕ) → (π / 4) ∈ ℝ) | |
6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ (π / 4) ∈ ℝ |
7 | 6 | recni 11273 | . . 3 ⊢ (π / 4) ∈ ℂ |
8 | rere 15158 | . . . . 5 ⊢ ((π / 4) ∈ ℝ → (ℜ‘(π / 4)) = (π / 4)) | |
9 | 6, 8 | ax-mp 5 | . . . 4 ⊢ (ℜ‘(π / 4)) = (π / 4) |
10 | pirp 26518 | . . . . . . . . 9 ⊢ π ∈ ℝ+ | |
11 | rphalfcl 13060 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ+ |
13 | rpgt0 13045 | . . . . . . . 8 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ 0 < (π / 2) |
15 | halfpire 26521 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
16 | lt0neg2 11768 | . . . . . . . 8 ⊢ ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0)) | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ (0 < (π / 2) ↔ -(π / 2) < 0) |
18 | 14, 17 | mpbi 230 | . . . . . 6 ⊢ -(π / 2) < 0 |
19 | nnrp 13044 | . . . . . . . . 9 ⊢ (4 ∈ ℕ → 4 ∈ ℝ+) | |
20 | 4, 19 | ax-mp 5 | . . . . . . . 8 ⊢ 4 ∈ ℝ+ |
21 | rpdivcl 13058 | . . . . . . . 8 ⊢ ((π ∈ ℝ+ ∧ 4 ∈ ℝ+) → (π / 4) ∈ ℝ+) | |
22 | 10, 20, 21 | mp2an 692 | . . . . . . 7 ⊢ (π / 4) ∈ ℝ+ |
23 | rpgt0 13045 | . . . . . . 7 ⊢ ((π / 4) ∈ ℝ+ → 0 < (π / 4)) | |
24 | 22, 23 | ax-mp 5 | . . . . . 6 ⊢ 0 < (π / 4) |
25 | neghalfpire 26522 | . . . . . . 7 ⊢ -(π / 2) ∈ ℝ | |
26 | 0re 11261 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
27 | 25, 26, 6 | lttri 11385 | . . . . . 6 ⊢ ((-(π / 2) < 0 ∧ 0 < (π / 4)) → -(π / 2) < (π / 4)) |
28 | 18, 24, 27 | mp2an 692 | . . . . 5 ⊢ -(π / 2) < (π / 4) |
29 | 3 | recni 11273 | . . . . . . . 8 ⊢ π ∈ ℂ |
30 | 2cnne0 12474 | . . . . . . . 8 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
31 | divdiv1 11976 | . . . . . . . 8 ⊢ ((π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((π / 2) / 2) = (π / (2 · 2))) | |
32 | 29, 30, 30, 31 | mp3an 1460 | . . . . . . 7 ⊢ ((π / 2) / 2) = (π / (2 · 2)) |
33 | 2t2e4 12428 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
34 | 33 | oveq2i 7442 | . . . . . . 7 ⊢ (π / (2 · 2)) = (π / 4) |
35 | 32, 34 | eqtri 2763 | . . . . . 6 ⊢ ((π / 2) / 2) = (π / 4) |
36 | rphalflt 13062 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ+ → ((π / 2) / 2) < (π / 2)) | |
37 | 12, 36 | ax-mp 5 | . . . . . 6 ⊢ ((π / 2) / 2) < (π / 2) |
38 | 35, 37 | eqbrtrri 5171 | . . . . 5 ⊢ (π / 4) < (π / 2) |
39 | 25 | rexri 11317 | . . . . . 6 ⊢ -(π / 2) ∈ ℝ* |
40 | 15 | rexri 11317 | . . . . . 6 ⊢ (π / 2) ∈ ℝ* |
41 | elioo2 13425 | . . . . . 6 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((π / 4) ∈ (-(π / 2)(,)(π / 2)) ↔ ((π / 4) ∈ ℝ ∧ -(π / 2) < (π / 4) ∧ (π / 4) < (π / 2)))) | |
42 | 39, 40, 41 | mp2an 692 | . . . . 5 ⊢ ((π / 4) ∈ (-(π / 2)(,)(π / 2)) ↔ ((π / 4) ∈ ℝ ∧ -(π / 2) < (π / 4) ∧ (π / 4) < (π / 2))) |
43 | 6, 28, 38, 42 | mpbir3an 1340 | . . . 4 ⊢ (π / 4) ∈ (-(π / 2)(,)(π / 2)) |
44 | 9, 43 | eqeltri 2835 | . . 3 ⊢ (ℜ‘(π / 4)) ∈ (-(π / 2)(,)(π / 2)) |
45 | atantan 26981 | . . 3 ⊢ (((π / 4) ∈ ℂ ∧ (ℜ‘(π / 4)) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘(π / 4))) = (π / 4)) | |
46 | 7, 44, 45 | mp2an 692 | . 2 ⊢ (arctan‘(tan‘(π / 4))) = (π / 4) |
47 | 2, 46 | eqtr3i 2765 | 1 ⊢ (arctan‘1) = (π / 4) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 ℝ*cxr 11292 < clt 11293 -cneg 11491 / cdiv 11918 ℕcn 12264 2c2 12319 4c4 12321 ℝ+crp 13032 (,)cioo 13384 ℜcre 15133 tanctan 16098 πcpi 16099 arctancatan 26922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-tan 16104 df-pi 16105 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-log 26613 df-atan 26925 |
This theorem is referenced by: leibpi 27000 |
Copyright terms: Public domain | W3C validator |