MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atan1 Structured version   Visualization version   GIF version

Theorem atan1 25613
Description: The arctangent of 1 is π / 4. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
atan1 (arctan‘1) = (π / 4)

Proof of Theorem atan1
StepHypRef Expression
1 tan4thpi 25206 . . 3 (tan‘(π / 4)) = 1
21fveq2i 6661 . 2 (arctan‘(tan‘(π / 4))) = (arctan‘1)
3 pire 25150 . . . . 5 π ∈ ℝ
4 4nn 11757 . . . . 5 4 ∈ ℕ
5 nndivre 11715 . . . . 5 ((π ∈ ℝ ∧ 4 ∈ ℕ) → (π / 4) ∈ ℝ)
63, 4, 5mp2an 691 . . . 4 (π / 4) ∈ ℝ
76recni 10693 . . 3 (π / 4) ∈ ℂ
8 rere 14529 . . . . 5 ((π / 4) ∈ ℝ → (ℜ‘(π / 4)) = (π / 4))
96, 8ax-mp 5 . . . 4 (ℜ‘(π / 4)) = (π / 4)
10 pirp 25153 . . . . . . . . 9 π ∈ ℝ+
11 rphalfcl 12457 . . . . . . . . 9 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
1210, 11ax-mp 5 . . . . . . . 8 (π / 2) ∈ ℝ+
13 rpgt0 12442 . . . . . . . 8 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
1412, 13ax-mp 5 . . . . . . 7 0 < (π / 2)
15 halfpire 25156 . . . . . . . 8 (π / 2) ∈ ℝ
16 lt0neg2 11185 . . . . . . . 8 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
1715, 16ax-mp 5 . . . . . . 7 (0 < (π / 2) ↔ -(π / 2) < 0)
1814, 17mpbi 233 . . . . . 6 -(π / 2) < 0
19 nnrp 12441 . . . . . . . . 9 (4 ∈ ℕ → 4 ∈ ℝ+)
204, 19ax-mp 5 . . . . . . . 8 4 ∈ ℝ+
21 rpdivcl 12455 . . . . . . . 8 ((π ∈ ℝ+ ∧ 4 ∈ ℝ+) → (π / 4) ∈ ℝ+)
2210, 20, 21mp2an 691 . . . . . . 7 (π / 4) ∈ ℝ+
23 rpgt0 12442 . . . . . . 7 ((π / 4) ∈ ℝ+ → 0 < (π / 4))
2422, 23ax-mp 5 . . . . . 6 0 < (π / 4)
25 neghalfpire 25157 . . . . . . 7 -(π / 2) ∈ ℝ
26 0re 10681 . . . . . . 7 0 ∈ ℝ
2725, 26, 6lttri 10804 . . . . . 6 ((-(π / 2) < 0 ∧ 0 < (π / 4)) → -(π / 2) < (π / 4))
2818, 24, 27mp2an 691 . . . . 5 -(π / 2) < (π / 4)
293recni 10693 . . . . . . . 8 π ∈ ℂ
30 2cnne0 11884 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
31 divdiv1 11389 . . . . . . . 8 ((π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((π / 2) / 2) = (π / (2 · 2)))
3229, 30, 30, 31mp3an 1458 . . . . . . 7 ((π / 2) / 2) = (π / (2 · 2))
33 2t2e4 11838 . . . . . . . 8 (2 · 2) = 4
3433oveq2i 7161 . . . . . . 7 (π / (2 · 2)) = (π / 4)
3532, 34eqtri 2781 . . . . . 6 ((π / 2) / 2) = (π / 4)
36 rphalflt 12459 . . . . . . 7 ((π / 2) ∈ ℝ+ → ((π / 2) / 2) < (π / 2))
3712, 36ax-mp 5 . . . . . 6 ((π / 2) / 2) < (π / 2)
3835, 37eqbrtrri 5055 . . . . 5 (π / 4) < (π / 2)
3925rexri 10737 . . . . . 6 -(π / 2) ∈ ℝ*
4015rexri 10737 . . . . . 6 (π / 2) ∈ ℝ*
41 elioo2 12820 . . . . . 6 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((π / 4) ∈ (-(π / 2)(,)(π / 2)) ↔ ((π / 4) ∈ ℝ ∧ -(π / 2) < (π / 4) ∧ (π / 4) < (π / 2))))
4239, 40, 41mp2an 691 . . . . 5 ((π / 4) ∈ (-(π / 2)(,)(π / 2)) ↔ ((π / 4) ∈ ℝ ∧ -(π / 2) < (π / 4) ∧ (π / 4) < (π / 2)))
436, 28, 38, 42mpbir3an 1338 . . . 4 (π / 4) ∈ (-(π / 2)(,)(π / 2))
449, 43eqeltri 2848 . . 3 (ℜ‘(π / 4)) ∈ (-(π / 2)(,)(π / 2))
45 atantan 25608 . . 3 (((π / 4) ∈ ℂ ∧ (ℜ‘(π / 4)) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘(π / 4))) = (π / 4))
467, 44, 45mp2an 691 . 2 (arctan‘(tan‘(π / 4))) = (π / 4)
472, 46eqtr3i 2783 1 (arctan‘1) = (π / 4)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5032  cfv 6335  (class class class)co 7150  cc 10573  cr 10574  0cc0 10575  1c1 10576   · cmul 10580  *cxr 10712   < clt 10713  -cneg 10909   / cdiv 11335  cn 11674  2c2 11729  4c4 11731  +crp 12430  (,)cioo 12779  cre 14504  tanctan 15467  πcpi 15468  arctancatan 25549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-tan 15473  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247  df-atan 25552
This theorem is referenced by:  leibpi  25627
  Copyright terms: Public domain W3C validator