![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expnass | Structured version Visualization version GIF version |
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.) |
Ref | Expression |
---|---|
expnass | ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 12293 | . . 3 ⊢ 3 ∈ ℂ | |
2 | 3nn0 12490 | . . 3 ⊢ 3 ∈ ℕ0 | |
3 | expmul 14073 | . . 3 ⊢ ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3)) | |
4 | 1, 2, 2, 3 | mp3an 1462 | . 2 ⊢ (3↑(3 · 3)) = ((3↑3)↑3) |
5 | 3re 12292 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 2, 2 | nn0mulcli 12510 | . . . 4 ⊢ (3 · 3) ∈ ℕ0 |
7 | 6 | nn0zi 12587 | . . 3 ⊢ (3 · 3) ∈ ℤ |
8 | 2, 2 | nn0expcli 14054 | . . . 4 ⊢ (3↑3) ∈ ℕ0 |
9 | 8 | nn0zi 12587 | . . 3 ⊢ (3↑3) ∈ ℤ |
10 | 1lt3 12385 | . . . 4 ⊢ 1 < 3 | |
11 | 1 | sqvali 14144 | . . . . 5 ⊢ (3↑2) = (3 · 3) |
12 | 2z 12594 | . . . . . 6 ⊢ 2 ∈ ℤ | |
13 | 3z 12595 | . . . . . 6 ⊢ 3 ∈ ℤ | |
14 | 2lt3 12384 | . . . . . . 7 ⊢ 2 < 3 | |
15 | ltexp2a 14131 | . . . . . . 7 ⊢ (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3)) | |
16 | 10, 14, 15 | mpanr12 704 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3)) |
17 | 5, 12, 13, 16 | mp3an 1462 | . . . . 5 ⊢ (3↑2) < (3↑3) |
18 | 11, 17 | eqbrtrri 5172 | . . . 4 ⊢ (3 · 3) < (3↑3) |
19 | ltexp2a 14131 | . . . 4 ⊢ (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3))) | |
20 | 10, 18, 19 | mpanr12 704 | . . 3 ⊢ ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3))) |
21 | 5, 7, 9, 20 | mp3an 1462 | . 2 ⊢ (3↑(3 · 3)) < (3↑(3↑3)) |
22 | 4, 21 | eqbrtrri 5172 | 1 ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 ℂcc 11108 ℝcr 11109 1c1 11111 · cmul 11115 < clt 11248 2c2 12267 3c3 12268 ℕ0cn0 12472 ℤcz 12558 ↑cexp 14027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-seq 13967 df-exp 14028 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |