MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnass Structured version   Visualization version   GIF version

Theorem expnass 14257
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.)
Assertion
Ref Expression
expnass ((3↑3)↑3) < (3↑(3↑3))

Proof of Theorem expnass
StepHypRef Expression
1 3cn 12374 . . 3 3 ∈ ℂ
2 3nn0 12571 . . 3 3 ∈ ℕ0
3 expmul 14158 . . 3 ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3))
41, 2, 2, 3mp3an 1461 . 2 (3↑(3 · 3)) = ((3↑3)↑3)
5 3re 12373 . . 3 3 ∈ ℝ
62, 2nn0mulcli 12591 . . . 4 (3 · 3) ∈ ℕ0
76nn0zi 12668 . . 3 (3 · 3) ∈ ℤ
82, 2nn0expcli 14139 . . . 4 (3↑3) ∈ ℕ0
98nn0zi 12668 . . 3 (3↑3) ∈ ℤ
10 1lt3 12466 . . . 4 1 < 3
111sqvali 14229 . . . . 5 (3↑2) = (3 · 3)
12 2z 12675 . . . . . 6 2 ∈ ℤ
13 3z 12676 . . . . . 6 3 ∈ ℤ
14 2lt3 12465 . . . . . . 7 2 < 3
15 ltexp2a 14216 . . . . . . 7 (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3))
1610, 14, 15mpanr12 704 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3))
175, 12, 13, 16mp3an 1461 . . . . 5 (3↑2) < (3↑3)
1811, 17eqbrtrri 5189 . . . 4 (3 · 3) < (3↑3)
19 ltexp2a 14216 . . . 4 (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3)))
2010, 18, 19mpanr12 704 . . 3 ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3)))
215, 7, 9, 20mp3an 1461 . 2 (3↑(3 · 3)) < (3↑(3↑3))
224, 21eqbrtrri 5189 1 ((3↑3)↑3) < (3↑(3↑3))
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   · cmul 11189   < clt 11324  2c2 12348  3c3 12349  0cn0 12553  cz 12639  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator