| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expnass | Structured version Visualization version GIF version | ||
| Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.) |
| Ref | Expression |
|---|---|
| expnass | ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12243 | . . 3 ⊢ 3 ∈ ℂ | |
| 2 | 3nn0 12436 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 3 | expmul 14048 | . . 3 ⊢ ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3)) | |
| 4 | 1, 2, 2, 3 | mp3an 1463 | . 2 ⊢ (3↑(3 · 3)) = ((3↑3)↑3) |
| 5 | 3re 12242 | . . 3 ⊢ 3 ∈ ℝ | |
| 6 | 2, 2 | nn0mulcli 12456 | . . . 4 ⊢ (3 · 3) ∈ ℕ0 |
| 7 | 6 | nn0zi 12534 | . . 3 ⊢ (3 · 3) ∈ ℤ |
| 8 | 2, 2 | nn0expcli 14029 | . . . 4 ⊢ (3↑3) ∈ ℕ0 |
| 9 | 8 | nn0zi 12534 | . . 3 ⊢ (3↑3) ∈ ℤ |
| 10 | 1lt3 12330 | . . . 4 ⊢ 1 < 3 | |
| 11 | 1 | sqvali 14121 | . . . . 5 ⊢ (3↑2) = (3 · 3) |
| 12 | 2z 12541 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 13 | 3z 12542 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 14 | 2lt3 12329 | . . . . . . 7 ⊢ 2 < 3 | |
| 15 | ltexp2a 14107 | . . . . . . 7 ⊢ (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3)) | |
| 16 | 10, 14, 15 | mpanr12 705 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3)) |
| 17 | 5, 12, 13, 16 | mp3an 1463 | . . . . 5 ⊢ (3↑2) < (3↑3) |
| 18 | 11, 17 | eqbrtrri 5125 | . . . 4 ⊢ (3 · 3) < (3↑3) |
| 19 | ltexp2a 14107 | . . . 4 ⊢ (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3))) | |
| 20 | 10, 18, 19 | mpanr12 705 | . . 3 ⊢ ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3))) |
| 21 | 5, 7, 9, 20 | mp3an 1463 | . 2 ⊢ (3↑(3 · 3)) < (3↑(3↑3)) |
| 22 | 4, 21 | eqbrtrri 5125 | 1 ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℂcc 11042 ℝcr 11043 1c1 11045 · cmul 11049 < clt 11184 2c2 12217 3c3 12218 ℕ0cn0 12418 ℤcz 12505 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |