| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expnass | Structured version Visualization version GIF version | ||
| Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.) |
| Ref | Expression |
|---|---|
| expnass | ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12274 | . . 3 ⊢ 3 ∈ ℂ | |
| 2 | 3nn0 12467 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 3 | expmul 14079 | . . 3 ⊢ ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3)) | |
| 4 | 1, 2, 2, 3 | mp3an 1463 | . 2 ⊢ (3↑(3 · 3)) = ((3↑3)↑3) |
| 5 | 3re 12273 | . . 3 ⊢ 3 ∈ ℝ | |
| 6 | 2, 2 | nn0mulcli 12487 | . . . 4 ⊢ (3 · 3) ∈ ℕ0 |
| 7 | 6 | nn0zi 12565 | . . 3 ⊢ (3 · 3) ∈ ℤ |
| 8 | 2, 2 | nn0expcli 14060 | . . . 4 ⊢ (3↑3) ∈ ℕ0 |
| 9 | 8 | nn0zi 12565 | . . 3 ⊢ (3↑3) ∈ ℤ |
| 10 | 1lt3 12361 | . . . 4 ⊢ 1 < 3 | |
| 11 | 1 | sqvali 14152 | . . . . 5 ⊢ (3↑2) = (3 · 3) |
| 12 | 2z 12572 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 13 | 3z 12573 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 14 | 2lt3 12360 | . . . . . . 7 ⊢ 2 < 3 | |
| 15 | ltexp2a 14138 | . . . . . . 7 ⊢ (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3)) | |
| 16 | 10, 14, 15 | mpanr12 705 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3)) |
| 17 | 5, 12, 13, 16 | mp3an 1463 | . . . . 5 ⊢ (3↑2) < (3↑3) |
| 18 | 11, 17 | eqbrtrri 5133 | . . . 4 ⊢ (3 · 3) < (3↑3) |
| 19 | ltexp2a 14138 | . . . 4 ⊢ (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3))) | |
| 20 | 10, 18, 19 | mpanr12 705 | . . 3 ⊢ ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3))) |
| 21 | 5, 7, 9, 20 | mp3an 1463 | . 2 ⊢ (3↑(3 · 3)) < (3↑(3↑3)) |
| 22 | 4, 21 | eqbrtrri 5133 | 1 ⊢ ((3↑3)↑3) < (3↑(3↑3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℂcc 11073 ℝcr 11074 1c1 11076 · cmul 11080 < clt 11215 2c2 12248 3c3 12249 ℕ0cn0 12449 ℤcz 12536 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |