MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnass Structured version   Visualization version   GIF version

Theorem expnass 14172
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.)
Assertion
Ref Expression
expnass ((3↑3)↑3) < (3↑(3↑3))

Proof of Theorem expnass
StepHypRef Expression
1 3cn 12293 . . 3 3 ∈ ℂ
2 3nn0 12490 . . 3 3 ∈ ℕ0
3 expmul 14073 . . 3 ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3))
41, 2, 2, 3mp3an 1462 . 2 (3↑(3 · 3)) = ((3↑3)↑3)
5 3re 12292 . . 3 3 ∈ ℝ
62, 2nn0mulcli 12510 . . . 4 (3 · 3) ∈ ℕ0
76nn0zi 12587 . . 3 (3 · 3) ∈ ℤ
82, 2nn0expcli 14054 . . . 4 (3↑3) ∈ ℕ0
98nn0zi 12587 . . 3 (3↑3) ∈ ℤ
10 1lt3 12385 . . . 4 1 < 3
111sqvali 14144 . . . . 5 (3↑2) = (3 · 3)
12 2z 12594 . . . . . 6 2 ∈ ℤ
13 3z 12595 . . . . . 6 3 ∈ ℤ
14 2lt3 12384 . . . . . . 7 2 < 3
15 ltexp2a 14131 . . . . . . 7 (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3))
1610, 14, 15mpanr12 704 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3))
175, 12, 13, 16mp3an 1462 . . . . 5 (3↑2) < (3↑3)
1811, 17eqbrtrri 5172 . . . 4 (3 · 3) < (3↑3)
19 ltexp2a 14131 . . . 4 (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3)))
2010, 18, 19mpanr12 704 . . 3 ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3)))
215, 7, 9, 20mp3an 1462 . 2 (3↑(3 · 3)) < (3↑(3↑3))
224, 21eqbrtrri 5172 1 ((3↑3)↑3) < (3↑(3↑3))
Colors of variables: wff setvar class
Syntax hints:  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5149  (class class class)co 7409  cc 11108  cr 11109  1c1 11111   · cmul 11115   < clt 11248  2c2 12267  3c3 12268  0cn0 12472  cz 12558  cexp 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator