MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnass Structured version   Visualization version   GIF version

Theorem expnass 13223
Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.)
Assertion
Ref Expression
expnass ((3↑3)↑3) < (3↑(3↑3))

Proof of Theorem expnass
StepHypRef Expression
1 3cn 11393 . . 3 3 ∈ ℂ
2 3nn0 11599 . . 3 3 ∈ ℕ0
3 expmul 13158 . . 3 ((3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(3 · 3)) = ((3↑3)↑3))
41, 2, 2, 3mp3an 1586 . 2 (3↑(3 · 3)) = ((3↑3)↑3)
5 3re 11392 . . 3 3 ∈ ℝ
62, 2nn0mulcli 11619 . . . 4 (3 · 3) ∈ ℕ0
76nn0zi 11691 . . 3 (3 · 3) ∈ ℤ
82, 2nn0expcli 13139 . . . 4 (3↑3) ∈ ℕ0
98nn0zi 11691 . . 3 (3↑3) ∈ ℤ
10 1lt3 11492 . . . 4 1 < 3
111sqvali 13196 . . . . 5 (3↑2) = (3 · 3)
12 2z 11698 . . . . . 6 2 ∈ ℤ
13 3z 11699 . . . . . 6 3 ∈ ℤ
14 2lt3 11491 . . . . . . 7 2 < 3
15 ltexp2a 13165 . . . . . . 7 (((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) ∧ (1 < 3 ∧ 2 < 3)) → (3↑2) < (3↑3))
1610, 14, 15mpanr12 697 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) → (3↑2) < (3↑3))
175, 12, 13, 16mp3an 1586 . . . . 5 (3↑2) < (3↑3)
1811, 17eqbrtrri 4867 . . . 4 (3 · 3) < (3↑3)
19 ltexp2a 13165 . . . 4 (((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) ∧ (1 < 3 ∧ (3 · 3) < (3↑3))) → (3↑(3 · 3)) < (3↑(3↑3)))
2010, 18, 19mpanr12 697 . . 3 ((3 ∈ ℝ ∧ (3 · 3) ∈ ℤ ∧ (3↑3) ∈ ℤ) → (3↑(3 · 3)) < (3↑(3↑3)))
215, 7, 9, 20mp3an 1586 . 2 (3↑(3 · 3)) < (3↑(3↑3))
224, 21eqbrtrri 4867 1 ((3↑3)↑3) < (3↑(3↑3))
Colors of variables: wff setvar class
Syntax hints:  w3a 1108   = wceq 1653  wcel 2157   class class class wbr 4844  (class class class)co 6879  cc 10223  cr 10224  1c1 10226   · cmul 10230   < clt 10364  2c2 11367  3c3 11368  0cn0 11579  cz 11665  cexp 13113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-n0 11580  df-z 11666  df-uz 11930  df-rp 12074  df-seq 13055  df-exp 13114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator