Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cos1bnd | Structured version Visualization version GIF version |
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
Ref | Expression |
---|---|
cos1bnd | ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq1 13840 | . . . . . . . 8 ⊢ (1↑2) = 1 | |
2 | 1 | oveq1i 7265 | . . . . . . 7 ⊢ ((1↑2) / 3) = (1 / 3) |
3 | 2 | oveq2i 7266 | . . . . . 6 ⊢ (2 · ((1↑2) / 3)) = (2 · (1 / 3)) |
4 | 2cn 11978 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
5 | 3cn 11984 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
6 | 3ne0 12009 | . . . . . . 7 ⊢ 3 ≠ 0 | |
7 | 4, 5, 6 | divreci 11650 | . . . . . 6 ⊢ (2 / 3) = (2 · (1 / 3)) |
8 | 3, 7 | eqtr4i 2769 | . . . . 5 ⊢ (2 · ((1↑2) / 3)) = (2 / 3) |
9 | 8 | oveq2i 7266 | . . . 4 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 − (2 / 3)) |
10 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
11 | 4, 5, 6 | divcli 11647 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
12 | 5, 6 | reccli 11635 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
13 | df-3 11967 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
14 | 13 | oveq1i 7265 | . . . . . 6 ⊢ (3 / 3) = ((2 + 1) / 3) |
15 | 5, 6 | dividi 11638 | . . . . . 6 ⊢ (3 / 3) = 1 |
16 | 4, 10, 5, 6 | divdiri 11662 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
17 | 14, 15, 16 | 3eqtr3ri 2775 | . . . . 5 ⊢ ((2 / 3) + (1 / 3)) = 1 |
18 | 10, 11, 12, 17 | subaddrii 11240 | . . . 4 ⊢ (1 − (2 / 3)) = (1 / 3) |
19 | 9, 18 | eqtri 2766 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 / 3) |
20 | 1re 10906 | . . . . 5 ⊢ 1 ∈ ℝ | |
21 | 0lt1 11427 | . . . . 5 ⊢ 0 < 1 | |
22 | 1le1 11533 | . . . . 5 ⊢ 1 ≤ 1 | |
23 | 0xr 10953 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
24 | elioc2 13071 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1))) | |
25 | 23, 20, 24 | mp2an 688 | . . . . . 6 ⊢ (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1)) |
26 | cos01bnd 15823 | . . . . . 6 ⊢ (1 ∈ (0(,]1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) | |
27 | 25, 26 | sylbir 234 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) |
28 | 20, 21, 22, 27 | mp3an 1459 | . . . 4 ⊢ ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3))) |
29 | 28 | simpli 483 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) < (cos‘1) |
30 | 19, 29 | eqbrtrri 5093 | . 2 ⊢ (1 / 3) < (cos‘1) |
31 | 28 | simpri 485 | . . 3 ⊢ (cos‘1) < (1 − ((1↑2) / 3)) |
32 | 2 | oveq2i 7266 | . . . 4 ⊢ (1 − ((1↑2) / 3)) = (1 − (1 / 3)) |
33 | 10, 12, 11 | subadd2i 11239 | . . . . 5 ⊢ ((1 − (1 / 3)) = (2 / 3) ↔ ((2 / 3) + (1 / 3)) = 1) |
34 | 17, 33 | mpbir 230 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
35 | 32, 34 | eqtri 2766 | . . 3 ⊢ (1 − ((1↑2) / 3)) = (2 / 3) |
36 | 31, 35 | breqtri 5095 | . 2 ⊢ (cos‘1) < (2 / 3) |
37 | 30, 36 | pm3.2i 470 | 1 ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 2c2 11958 3c3 11959 (,]cioc 13009 ↑cexp 13710 cosccos 15702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ioc 13013 df-ico 13014 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-fac 13916 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-cos 15708 |
This theorem is referenced by: cos2bnd 15825 |
Copyright terms: Public domain | W3C validator |