| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cos1bnd | Structured version Visualization version GIF version | ||
| Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| cos1bnd | ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq1 14167 | . . . . . . . 8 ⊢ (1↑2) = 1 | |
| 2 | 1 | oveq1i 7400 | . . . . . . 7 ⊢ ((1↑2) / 3) = (1 / 3) |
| 3 | 2 | oveq2i 7401 | . . . . . 6 ⊢ (2 · ((1↑2) / 3)) = (2 · (1 / 3)) |
| 4 | 2cn 12268 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 5 | 3cn 12274 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 6 | 3ne0 12299 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 7 | 4, 5, 6 | divreci 11934 | . . . . . 6 ⊢ (2 / 3) = (2 · (1 / 3)) |
| 8 | 3, 7 | eqtr4i 2756 | . . . . 5 ⊢ (2 · ((1↑2) / 3)) = (2 / 3) |
| 9 | 8 | oveq2i 7401 | . . . 4 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 − (2 / 3)) |
| 10 | ax-1cn 11133 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 11 | 4, 5, 6 | divcli 11931 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
| 12 | 5, 6 | reccli 11919 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
| 13 | df-3 12257 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
| 14 | 13 | oveq1i 7400 | . . . . . 6 ⊢ (3 / 3) = ((2 + 1) / 3) |
| 15 | 5, 6 | dividi 11922 | . . . . . 6 ⊢ (3 / 3) = 1 |
| 16 | 4, 10, 5, 6 | divdiri 11946 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
| 17 | 14, 15, 16 | 3eqtr3ri 2762 | . . . . 5 ⊢ ((2 / 3) + (1 / 3)) = 1 |
| 18 | 10, 11, 12, 17 | subaddrii 11518 | . . . 4 ⊢ (1 − (2 / 3)) = (1 / 3) |
| 19 | 9, 18 | eqtri 2753 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 / 3) |
| 20 | 1re 11181 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 21 | 0lt1 11707 | . . . . 5 ⊢ 0 < 1 | |
| 22 | 1le1 11813 | . . . . 5 ⊢ 1 ≤ 1 | |
| 23 | 0xr 11228 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 24 | elioc2 13377 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1))) | |
| 25 | 23, 20, 24 | mp2an 692 | . . . . . 6 ⊢ (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1)) |
| 26 | cos01bnd 16161 | . . . . . 6 ⊢ (1 ∈ (0(,]1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) | |
| 27 | 25, 26 | sylbir 235 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) |
| 28 | 20, 21, 22, 27 | mp3an 1463 | . . . 4 ⊢ ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3))) |
| 29 | 28 | simpli 483 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) < (cos‘1) |
| 30 | 19, 29 | eqbrtrri 5133 | . 2 ⊢ (1 / 3) < (cos‘1) |
| 31 | 28 | simpri 485 | . . 3 ⊢ (cos‘1) < (1 − ((1↑2) / 3)) |
| 32 | 2 | oveq2i 7401 | . . . 4 ⊢ (1 − ((1↑2) / 3)) = (1 − (1 / 3)) |
| 33 | 10, 12, 11 | subadd2i 11517 | . . . . 5 ⊢ ((1 − (1 / 3)) = (2 / 3) ↔ ((2 / 3) + (1 / 3)) = 1) |
| 34 | 17, 33 | mpbir 231 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
| 35 | 32, 34 | eqtri 2753 | . . 3 ⊢ (1 − ((1↑2) / 3)) = (2 / 3) |
| 36 | 31, 35 | breqtri 5135 | . 2 ⊢ (cos‘1) < (2 / 3) |
| 37 | 30, 36 | pm3.2i 470 | 1 ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 2c2 12248 3c3 12249 (,]cioc 13314 ↑cexp 14033 cosccos 16037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ioc 13318 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-fac 14246 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-cos 16043 |
| This theorem is referenced by: cos2bnd 16163 |
| Copyright terms: Public domain | W3C validator |