![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cos1bnd | Structured version Visualization version GIF version |
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
Ref | Expression |
---|---|
cos1bnd | ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq1 14159 | . . . . . . . 8 ⊢ (1↑2) = 1 | |
2 | 1 | oveq1i 7419 | . . . . . . 7 ⊢ ((1↑2) / 3) = (1 / 3) |
3 | 2 | oveq2i 7420 | . . . . . 6 ⊢ (2 · ((1↑2) / 3)) = (2 · (1 / 3)) |
4 | 2cn 12287 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
5 | 3cn 12293 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
6 | 3ne0 12318 | . . . . . . 7 ⊢ 3 ≠ 0 | |
7 | 4, 5, 6 | divreci 11959 | . . . . . 6 ⊢ (2 / 3) = (2 · (1 / 3)) |
8 | 3, 7 | eqtr4i 2764 | . . . . 5 ⊢ (2 · ((1↑2) / 3)) = (2 / 3) |
9 | 8 | oveq2i 7420 | . . . 4 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 − (2 / 3)) |
10 | ax-1cn 11168 | . . . . 5 ⊢ 1 ∈ ℂ | |
11 | 4, 5, 6 | divcli 11956 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
12 | 5, 6 | reccli 11944 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
13 | df-3 12276 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
14 | 13 | oveq1i 7419 | . . . . . 6 ⊢ (3 / 3) = ((2 + 1) / 3) |
15 | 5, 6 | dividi 11947 | . . . . . 6 ⊢ (3 / 3) = 1 |
16 | 4, 10, 5, 6 | divdiri 11971 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
17 | 14, 15, 16 | 3eqtr3ri 2770 | . . . . 5 ⊢ ((2 / 3) + (1 / 3)) = 1 |
18 | 10, 11, 12, 17 | subaddrii 11549 | . . . 4 ⊢ (1 − (2 / 3)) = (1 / 3) |
19 | 9, 18 | eqtri 2761 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 / 3) |
20 | 1re 11214 | . . . . 5 ⊢ 1 ∈ ℝ | |
21 | 0lt1 11736 | . . . . 5 ⊢ 0 < 1 | |
22 | 1le1 11842 | . . . . 5 ⊢ 1 ≤ 1 | |
23 | 0xr 11261 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
24 | elioc2 13387 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1))) | |
25 | 23, 20, 24 | mp2an 691 | . . . . . 6 ⊢ (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1)) |
26 | cos01bnd 16129 | . . . . . 6 ⊢ (1 ∈ (0(,]1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) | |
27 | 25, 26 | sylbir 234 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) |
28 | 20, 21, 22, 27 | mp3an 1462 | . . . 4 ⊢ ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3))) |
29 | 28 | simpli 485 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) < (cos‘1) |
30 | 19, 29 | eqbrtrri 5172 | . 2 ⊢ (1 / 3) < (cos‘1) |
31 | 28 | simpri 487 | . . 3 ⊢ (cos‘1) < (1 − ((1↑2) / 3)) |
32 | 2 | oveq2i 7420 | . . . 4 ⊢ (1 − ((1↑2) / 3)) = (1 − (1 / 3)) |
33 | 10, 12, 11 | subadd2i 11548 | . . . . 5 ⊢ ((1 − (1 / 3)) = (2 / 3) ↔ ((2 / 3) + (1 / 3)) = 1) |
34 | 17, 33 | mpbir 230 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
35 | 32, 34 | eqtri 2761 | . . 3 ⊢ (1 − ((1↑2) / 3)) = (2 / 3) |
36 | 31, 35 | breqtri 5174 | . 2 ⊢ (cos‘1) < (2 / 3) |
37 | 30, 36 | pm3.2i 472 | 1 ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 ℝcr 11109 0cc0 11110 1c1 11111 + caddc 11113 · cmul 11115 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 − cmin 11444 / cdiv 11871 2c2 12267 3c3 12268 (,]cioc 13325 ↑cexp 14027 cosccos 16008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-ioc 13329 df-ico 13330 df-fz 13485 df-fzo 13628 df-fl 13757 df-seq 13967 df-exp 14028 df-fac 14234 df-hash 14291 df-shft 15014 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-ef 16011 df-cos 16014 |
This theorem is referenced by: cos2bnd 16131 |
Copyright terms: Public domain | W3C validator |