MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolre Structured version   Visualization version   GIF version

Theorem ovolre 25573
Description: The measure of the real numbers. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
ovolre (vol*‘ℝ) = +∞

Proof of Theorem ovolre
StepHypRef Expression
1 ssid 4017 . . . 4 ℝ ⊆ ℝ
2 ovolcl 25526 . . . 4 (ℝ ⊆ ℝ → (vol*‘ℝ) ∈ ℝ*)
31, 2ax-mp 5 . . 3 (vol*‘ℝ) ∈ ℝ*
4 pnfge 13169 . . 3 ((vol*‘ℝ) ∈ ℝ* → (vol*‘ℝ) ≤ +∞)
53, 4ax-mp 5 . 2 (vol*‘ℝ) ≤ +∞
6 0re 11260 . . . 4 0 ∈ ℝ
7 ovolicopnf 25572 . . . 4 (0 ∈ ℝ → (vol*‘(0[,)+∞)) = +∞)
86, 7ax-mp 5 . . 3 (vol*‘(0[,)+∞)) = +∞
9 rge0ssre 13492 . . . 4 (0[,)+∞) ⊆ ℝ
10 ovolss 25533 . . . 4 (((0[,)+∞) ⊆ ℝ ∧ ℝ ⊆ ℝ) → (vol*‘(0[,)+∞)) ≤ (vol*‘ℝ))
119, 1, 10mp2an 692 . . 3 (vol*‘(0[,)+∞)) ≤ (vol*‘ℝ)
128, 11eqbrtrri 5170 . 2 +∞ ≤ (vol*‘ℝ)
13 pnfxr 11312 . . 3 +∞ ∈ ℝ*
14 xrletri3 13192 . . 3 (((vol*‘ℝ) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘ℝ) = +∞ ↔ ((vol*‘ℝ) ≤ +∞ ∧ +∞ ≤ (vol*‘ℝ))))
153, 13, 14mp2an 692 . 2 ((vol*‘ℝ) = +∞ ↔ ((vol*‘ℝ) ≤ +∞ ∧ +∞ ≤ (vol*‘ℝ)))
165, 12, 15mpbir2an 711 1 (vol*‘ℝ) = +∞
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1536  wcel 2105  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  +∞cpnf 11289  *cxr 11291  cle 11293  [,)cico 13385  vol*covol 25510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-ovol 25512
This theorem is referenced by:  i1f0rn  25730  ovoliunnfl  37648  voliunnfl  37650  volsupnfl  37651
  Copyright terms: Public domain W3C validator